
Application Note 101

Product and company names are trademarks or trade names of their respective companies.

341256A-01 © Copyright 1997 National Instruments Corporation. All rights reserved. April 1997

Developing Multithreaded GPIB
Applications in

Windows NT and Windows 95
Clay Bean, Tony Iglesias, Jim Nagle, Srdan Zirojevic

Introduction
Multithreading is a method of programming in which the work of an application is divided into different tasks,
or threads. These different threads are created by the main thread of an application and can execute
independently of other threads in the system. When a thread completes its task, it exits. The main thread of an
application is responsible for closing the application once all tasks have been completed. If your system has
more than one processor, you can increase the performance of your application by simultaneously executing
individual threads on separate processors. You can also tune single processor systems to yield greater
performance by allocating appropriate processor time slices to each thread in your application. By configuring
the amount of processor time allocated for each thread, you can improve the performance of your application
because the processor can continue to execute one thread while waiting for external events before executing
another thread – a common scenario in GPIB applications.

This application note introduces ways you can take advantage of the multithreading features of the NI-488.2
software for Windows NT and Windows 95. Topics include an overview of the multithreaded capability of the
NI-488.2 API and examples of multithreaded applications for GPIB-based instrument control.

Multithreading for Win32 GPIB Applications
NI-488.2M software for Windows NT and Windows 95 delivers complete functionality for multithreaded GPIB
applications, including multiple threads in multiple GPIB applications as well as multiple threads in a single
GPIB application. NI-488.2M software is designed to efficiently handle calls made from both single and
multithreaded GPIB applications. In some multithreaded applications where GPIB calls can be completely
independent of each other, the software executes these calls in parallel. Systems that include more than one
GPIB interface, where calls are simultaneously made to separate GPIB interfaces, are an example of this
situation. In multithreaded applications where calls are made to a single GPIB interface, the calls are
executed serially in the order in which they are received. Typically, each GPIB application executes as a
single process. Within these processes, the applications can spawn one or more threads for executing a variety
of application-related tasks. In multithreaded GPIB applications, the GPIB global variables (ibsta, iberr,
ibcnt, ibcntl), often used for monitoring GPIB system status, are allocated on a per process basis. Thus,
multiple processes each have their own private copies of the GPIB global variables. Within a single process,
these GPIB global variables are guaranteed to be valid only when a single thread is making GPIB calls. When
GPIB calls are made from multiple threads in a single process, each thread is referencing and updating the
same GPIB global variables, making the value of the GPIB global variables unreliable. Managing access to
global variables in a multithreaded application is a standard issue that must be addressed. To write
applications that spawn multiple threads within a single process, you can use the following calls that have
been added to the NI-488.2 API for multithreaded Win32 GPIB applications:

• ThreadIbsta() returns the thread-specific ibsta value.

• ThreadIberr() returns the thread-specific iberr value.

• ThreadIbcnt() returns the thread-specific ibcnt value.

• ThreadIbcntl() returns the thread-specific ibcntl value.

2

NI-488.2M software for Windows NT and Windows 95 keeps separate copies of the GPIB global variables for
each thread. The four calls listed above provide access to the thread-specific GPIB global variables. This
ensures the integrity of the GPIB global variables when you have multiple threads within the same process
making GPIB calls.

Multithreaded Instrument Control Applications
Instrument control applications can take advantage of multithreading in a number of ways. Multithreading can
help you isolate separate application tasks in order to manage system resources more efficiently. You can use
multithreading to isolate time-critical tasks in separate threads so that you can monitor time-critical events,
such as a Service Request (SRQ), while background processing acquired data available in memory. For
example, an application might have three threads with different responsibilities – one that manages user input,
a second that acquires data, and a third responsible for processing and displaying data. Processing and
displaying data can be very time consuming and processor intensive. The amount of data and the frequency at
which you acquire data can vary. Many times applications may also constantly check for SRQs from
instruments. User interaction may be a sporadic event compared to the other ongoing activities in the
application. Using multithreading, you can isolate these tasks and address the processing needs of each
individual task.

For applications that use more than one GPIB interface, a single thread can be dedicated to manage each
GPIB interface and the instrumentation each interface controls. For example, you can configure one interface
to manage high-speed GPIB (HS488) instruments and another to manage standard GPIB instruments. An
example illustrating how you can use separate threads for each GPIB interface can be found in Appendix A.

As mentioned before, you can use multithreading to perform time-critical or time-consuming operations in
separate threads so that the time dependent tasks execute in a manner that enhances the performance of the
overall application. Another common example is logging acquired and processed data to disk. Logging data to
disk can be a time consuming task relative to the time it takes to acquire and/or process data. An application
can use a separate thread and data buffering for logging data, while another thread manages acquisition and
processing of data. You can also use multiple threads within an application to respond to emergency situations.
A control thread can be tasked with monitoring the system for alarm conditions. Other threads can do the real
work of your application, but if an alarm condition develops, the control thread takes responsibility for shutting
down the equipment in a timely manner. This frees the other threads from the responsibility of continually
checking for the alarm conditions.

Application Example 1

Problem Description
Suppose your GPIB system uses a single GPIB interface to communicate with several GPIB instruments. Each
instrument is configured to use a different primary address. The GPIB controller acquires and displays a fixed
number of readings from each instrument. There are two possible solutions – single-threaded and multithreaded
– and the tradeoffs between them are included below. Example code for each approach is included in the
appendixes.

Single-Threaded Solution
In a single-threaded solution, your application might do the following:

1. While more readings to acquire
a. Tell instrument 1 to send data
b. Acquire data from instrument 1
c. Tell instrument 2 to send data
d. Acquire data from instrument 2
e. Display acquired data

(See Appendix A for C source code)

3

Multithreaded Solution
A multithreaded solution could be implemented much differently. A different thread can manage each GPIB
instrument. The thread for each instrument might do the following:

1. While more readings to acquire
a. Tell instrument to send data
b. Acquire data from instrument
c. Display acquired data

After creating a thread for each GPIB instrument, the main thread of the application only has to wait for each
of the created threads to exit. The main thread could do the following:

1. Create a thread for each GPIB instrument

2. Wait for all threads to exit

(See Appendix B for C source code)

Comparison of Solutions
There are strengths and weaknesses to both solutions offered above. The main strength of the multithreaded
solution is that the GPIB instruments spend little time in an idle state. Instruments can be serviced
immediately when data is available. In the single-threaded solution, each instrument has to wait idly while the
application communicates with the other instruments and while the application displays all of the acquired
data. The extent of this idle time depends on how long it takes to acquire data from the other instruments and
how long it takes to process and display all of the data acquired. These idle times can significantly affect
overall application performance.

The types of instruments you use can affect the performance benefits that multithreading has to offer. For
example, instruments such as oscilloscopes and spectrum analyzers generally capture large volumes of data
compared to a single reading from a digital multimeter (DMM). In addition, users generally perform
customized post–processing and use graphs to display the processed waveform data. In situations such as
these, multithreading can be used to enhance the performance of the overall application by acquiring
measurements in parallel rather than in a serial fashion.

A weakness of any multithreaded solution is the added complexity that multithreading adds to the application.
This added complexity is a consequence of the need for synchronization between the daughter threads and the
main thread.

Application Example 2

Problem Description
Suppose your GPIB system uses a single GPIB instrument. The GPIB controller acquires, processes, and logs
to a file a fixed number of readings from the GPIB instrument. There are two possible solutions – single-
threaded and multithreaded – and the tradeoffs between them are included in the following discussion.
Example code for each approach is included in the appendixes.

Single-Threaded Solution
In a single-threaded solution, your application might do the following:

1. While more readings to acquire
a. Tell instrument to send data
b. Acquire data from instrument
c. Format, process and log data

(See Appendix C for C source code)

4

Multithreaded Solution
A multithreaded solution could be implemented differently. Each type function can be managed in a different
thread. One thread can be responsible for communicating with the GPIB instrument and the other thread can be
responsible for formatting, processing, and logging the data:

GPIB Thread:

1. While more readings to acquire
a. Tell instrument to send data
b. Acquire data from instrument

Log Thread:

1. Format, process, and log data as it becomes available

Main Thread:

1. Create the GPIB and log threads

2. Wait for all threads to exit

(See Appendix D for C source code)

Comparison of Solutions
As in Example 1, there are strengths and weaknesses to both solutions. The main advantage of the
multithreaded solution is that it decouples logging activity and GPIB I/O so that they can execute separately
of each other. This approach maximizes the opportunity to have separate operations (i.e., GPIB data
acquisition and data logging) occur in parallel. In the single-threaded case, the acquisition and logging of data
are serial, potentially reducing the overall throughput of the system.

In this example, a single buffer is used to hold data, but it could be expanded to use multiple buffers or even a
circular-buffering scheme. With multiple or circular buffers, you can develop continuous acquisition and
logging applications that can quickly acquire, process, and log data on the fly.

A disadvantage of the multithreaded solution is the need for synchronization between separate threads. The
data formatting and logging thread has to wait for the buffer to be filled by the GPIB data acquisition thread.
Likewise, the GPIB data acquisition thread has to wait for the data formatting and logging thread to finish
processing the data before it puts new data into the buffer. These threads must synchronize with each other in
order to safely access the shared buffer. Synchronization primitives called “events” are used to accomplish
this. Using events adds an additional layer of complexity to the development of the application.

Conclusions
This application note introduces how multithreading can be incorporated into GPIB instrument control
applications. We have discussed a number of situations in which you can use multithreading to divide multiple
tasks of an overall application. While multithreading offers an alternative method for implementing your
applications, multithreaded applications are more difficult to correctly design and debug than single-threaded
applications. If you would like to take advantage of the multithreading capabilities of the NI-488.2M API, you
should make a dedicated effort to learn the concepts of multithreading before you begin writing your
applications. A possible resource to get you started is Advanced Windows: The Developer’s Guide to the Win32
API for Windows NT 3.5 and Windows 95, by Jeffrey Richter.

5

Appendix A
Example 1 – Single-Threaded Sample Code

// This sample is a Win32 console application that acquires and displays data
// from two separate GPIB devices that are both connected to a single GPIB
// interface. This sample assumes that the GPIB devices respond to a command of
// "MEAS:DC?" by sending back a measurement in an ASCII string that is less
// than 100 bytes long. The sample is written to acquire and display
// NUMBER_MEASUREMENTS measurements from each GPIB device.
//
// The single-threaded version of this sample serially communicates with each
// of the attached GPIB devices from a loop in main.
//
#include <windows.h>
#include "decl-32.h"
#include <stdio.h>

#define NUMBER_MEASUREMENTS 20

int main ()
{
 int ud1, ud2, counter;
 char measure1[102];
 char measure2[102];
 BOOL error = FALSE;

 // Open handle to device 1
 ud1 = ibdev (0, // connect board is gpib0
 3, // device 1 primary address is 3
 0, // device 1 doesn't use secondary addressing
 T10s, // I/O timeout period - 10 seconds
 1, // use EOI to mark the end of I/O writes
 0); // don't use an EOS character at the end of reads
 if (ud1 == -1) {
 printf ("ibdev call failed with ibsta = 0x%x, iberr = %d, ibcntl = %x.\n",
 ibsta, iberr, ibcntl);
 printf ("exit application\n");
 return -1;
 }
 // Open handle to device 2
 ud2 = ibdev (0, // connect board is gpib0
 4, // device 2 primary address is 4
 0, // device 2 doesn't use secondary addressing
 T10s, // I/O timeout period - 10 seconds
 1, // use EOI to mark the end of I/O writes
 0); // don't use an EOS character at the end of reads
 if (ud2 == -1) {
 printf ("ibdev call failed with ibsta = 0x%x, iberr = %d, ibcntl = %x.\n",
 ibsta, iberr, ibcntl);
 printf ("exit application\n");
 // Put any open handles offline before exiting
 ibonl (ud1, 0);
 return -1;
 }

 // While fewer than NUMBER_MEASUREMENTS have been acquired and displayed
 // continue getting more measurements.
 for (counter = 0; counter < NUMBER_MEASUREMENTS; counter++) {

 // Tell device 1 to send a measurement
 ibwrt (ud1, "MEAS:DC?", 8);
 if (ibsta & ERR) {
 printf ("Write of command to device 1 failed!. Exit application.\n");
 error = TRUE;
 break;
 }
 ibrd (ud1, measure1, 100);
 if (ibsta & ERR) {

6

 printf ("Read from device 1 failed!. Exit application.\n");
 error = TRUE;
 break;
 }
 // ibcnt contains the number of bytes in the measurement. Use it to
 // NULL terminate the measurement so it prints right.
 measure1[ibcnt] = 0;

 // Tell device 2 to send a measurement
 ibwrt (ud2, "MEAS:DC?", 8);
 if (ibsta & ERR) {
 printf ("Write of command to device 2 failed!. Exit application.\n");
 error = TRUE;
 break;
 }
 ibrd (ud2, measure2, 100);
 if (ibsta & ERR) {
 printf ("Read from device 2 failed!. Exit application.\n");
 error = TRUE;
 break;
 }
 // ibcnt contains the number of bytes in the measurement. Use it to
 // NULL terminate the measurement so it prints right.
 measure2[ibcnt] = 0;

 // Display the measurements
 printf ("Measurement:%s, %s\n", measure1, measure2);

 }

 // Put open handles offline before exiting
 ibonl (ud1, 0);
 ibonl (ud2, 0);
 if (error) {
 return -1;
 }
 else {
 return 0;
 }
}

7

Appendix B
Example 1 – Multithreaded Sample Code

// This sample is a Win32 console application that acquires and displays data
// from two separate GPIB devices located at primary GPIB addresses (pad) 3 and 4.
// Both devices are connected to a single GPIB interface.
// This sample assumes that the GPIB devices respond to a command of
// "MEAS:DC?" by sending back a measurement in an ASCII string that is less
// than 100 bytes long. The sample is written to acquire and display
// NUMBER_MEASUREMENTS measurements from each GPIB device.
//
// The multithreaded version of this sample creates two threads that
// independently communicate with each of the two GPIB devices. While the two
// threads are executing, the main thread just waits for both of them to exit.
//
#include <windows.h>
#include "decl-32.h"
#include <stdio.h>

#define NUMBER_MEASUREMENTS 20
DWORD DeviceThreadFunction(int Pad);

DWORD main (void)
{
 int DevicePads[2] = {3, 4}; // assume the GPIB devices are at pads 3 and 4
 HANDLE ThreadHandles[2];
 DWORD ThreadId;

 // Create the thread for the first device (pad 3)
 ThreadHandles[0] = CreateThread (
 NULL, // default security
 0, // default stack size
 (LPTHREAD_START_ROUTINE)DeviceThreadFunction,
 DevicePads[0], // single param is the index
 0, // run thread immediately
 &ThreadId);

 if (ThreadHandles[0] == NULL) {
 printf ("Create thread for device 1 failed with error %x. Exiting application.\n",
 GetLastError());
 return -1;
 }

 // Create the thread for the second device (pad 4)
 ThreadHandles[1] = CreateThread (
 NULL, // default security
 0, // default stack size
 (LPTHREAD_START_ROUTINE)DeviceThreadFunction,
 DevicePads[1], // single param is the index
 0, // run thread immediately
 &ThreadId);

 if (ThreadHandles[1] == NULL) {
 printf ("Create thread for device 2 failed with error %x. Exiting application.\n",
 GetLastError());
 return -1;
 }

 // Wait for both of the threads to exit
 WaitForMultipleObjects(2, // number of handles to wait on
 ThreadHandles, // array of thread handles
 TRUE, // wait for ***all***
 INFINITE // wait forever
);

 // Check the exit code of both threads
 {
 DWORD ExitCode;

8

 GetExitCodeThread (ThreadHandles[0], &ExitCode);
 if (ExitCode == -1) {
 printf ("Device 1 failed.\n");
 }
 GetExitCodeThread (ThreadHandles[1], &ExitCode);
 if (ExitCode == -1) {
 printf ("Device 2 failed.\n");
 }
 }

 CloseHandle (ThreadHandles[0]);
 CloseHandle (ThreadHandles[1]);

 return 0;
}

DWORD DeviceThreadFunction(int Pad)
{
 int ud; // handle of the device
 int counter; // used to count the number of measurements taken
 char measure[102]; // string to read measurement into
 BOOL error = FALSE; // boolean used to indicate an error has occurred

 // Open handle to the device
 ud = ibdev (0, // connect board is gpib0
 Pad, // device primary address is 'pad'
 0, // device doesn't use secondary addressing
 T10s, // I/O timeout period - 10 seconds
 1, // use EOI to mark the end of I/O writes
 0); // don't use an EOS character at the end of reads
 if (ud == -1) {
 printf ("ibdev call failed with ibsta = 0x%x, iberr = %d, ibcntl = %x.\n",
 ThreadIbsta(), ThreadIberr(), ThreadIbcntl());
 printf ("exit application\n");
 return -1;
 }

 // While fewer than NUMBER_MEASUREMENTS have been acquired and displayed
 // continue getting more measurements.
 for (counter = 0; counter < NUMBER_MEASUREMENTS; counter++) {

 // Tell device 1 to send a measurement
 ibwrt (ud, "MEAS:DC?", 8);
 if (ThreadIbsta() & ERR) {
 printf ("Write of command to pad %x device failed!. Exit application.\n", pad);
 error = TRUE;
 break;
 }
 ibrd (ud, measure, 100);
 if (ThreadIbsta() & ERR) {
 printf ("Read from pad %x device failed!. Exit application.\n", pad);
 error = TRUE;
 break;
 }
 // ibcnt contains the number of bytes in the measurement. Use it to
 // NULL terminate the measurement so it prints right.
 measure[ThreadIbcnt()] = 0;

 // Display the measurement
 printf ("Measurement from pad %x device: %s\n", pad, measure);
 }
 // put the handle offline before exiting
 ibonl (ud, 0);

 if (error) {
 return -1;
 }
 else {
 return 0;
 }
}

9

Appendix C
Example 2 – Single-Threaded Sample Code

// This sample is a Win32 console application that acquires data from a single
// GPIB instrument. The data is processed and then logged to a file. This sample
// assumes that the GPIB device responds to a command of
// "SOUR:FUNC SIN; SENS:DATA?"
// by sending back a complex reading that is less than 2000 bytes long. The
// sample is written to acquire, format and log a total of NUMBER_MEASUREMENTS
// from the GPIB device.
//
// This is the single-threaded version of this sample.
//

#include <windows.h>
#include "decl-32.h"
#include <stdio.h>

#define NUMBER_MEASUREMENTS 20

int main ()
{
 int ud, counter;
 char Measurement[2002];
 BOOL error = FALSE;

 // Open handle to device 1
 ud = ibdev (0, // connect board is gpib0
 3, // device primary address is 3
 0, // device doesn't use secondary addressing
 T10s, // I/O timeout period - 10 seconds
 1, // use EOI to mark the end of I/O writes
 0); // don't use an EOS character at the end of reads

 if (ud == -1) {
 printf ("ibdev call failed with ibsta = 0x%x, iberr = %d, ibcntl = %x.\n",
 ibsta, iberr, ibcntl);
 printf ("exit application\n");
 return -1;
 }

 // While fewer than NUMBER_MEASUREMENTS have been acquired and displayed
 // continue getting more measurements.
 for (counter = 0; counter < NUMBER_MEASUREMENTS; counter++) {

 // Tell device to send a measurement
 ibwrt(ud, "SOUR:FUNC SIN; SENS:DATA?", 25);
 if (ibsta & ERR) {
 printf ("Write of command to device failed!. Exit application.\n");
 error = TRUE;
 break;
 }
 ibrd (ud, Measurement, 2000);
 if (ibsta & ERR) {
 printf ("Read from device failed!. Exit application.\n");
 error = TRUE;
 break;
 }
 // Display the measurement
 FormatAndLogMeasurement(Measurement);
 }
 // Put open handles offline before exiting
 ibonl (ud, 0);
 if (error) {
 return -1;
 }
 else {
 return 0;
 }
}

10

Appendix D
Example 2 – Multithreaded Sample Code

// This sample is a Win32 console application that acquires data from a single
// GPIB instrument. The data is processed and then logged to a file. This sample
// assumes that the GPIB device responds to a command of
// "SOUR:FUNC SIN; SENS:DATA?"
// by sending back a complex reading that is less than 2000 bytes long. The
// sample is written to acquire, format and log a total of NUMBER_MEASUREMENTS
// from the GPIB device.
//
// The multi-threaded solution creates two worker threads for the application.
// One thread is responsible for acquiring data from the GPIB instrument and
// the other thread is responsible for formatting and logging data as it becomes
// available.
//

#include <windows.h>
#include "decl-32.h"
#include <stdio.h>

#define NUMBER_MEASUREMENTS 20
DWORD GpibThreadFunction(LPDWORD Param);
DWORD LogThreadFunction(LPDWORD Param);

// global strings for readings shared by the GpibThread and LogThread
char Measurement[2002];
BOOL MoreDataComing = TRUE;

// handles for the synchronization events shared by the two threads
HANDLE DataReady;
HANDLE BufferFree;

DWORD main (void)
{
 HANDLE GpibThread;
 HANDLE LogThread;
 DWORD ThreadId;

 // Create the two synchronization events (DataReady and BufferFree) used
 // by the GpibThread and LogThread. Note that the initial state of the
 // DataReady event is not signaled because data only becomes available
 // after the GpibThread has read it in. Also note that the initial state
 // of the BufferFree event is signaled because initially the buffer is empty.
 //
 DataReady = CreateEvent(NULL, // default security attributes
 FALSE, // automatically reset after wait
 FALSE, // initial state is ***not*** signaled
 NULL // no name for the event
);
 BufferFree = CreateEvent(NULL, // default security attributes
 FALSE, // automatically reset after wait
 TRUE, // initial state IS signaled
 NULL // no name for the event
);

 // Create the thread for the GPIB instrument
 GpibThread = CreateThread (
 NULL, // default security
 0, // default stack size
 (LPTHREAD_START_ROUTINE)GpibThreadFunction,
 NULL, // NULL parameter to the thread func
 0, // run thread immediately
 &ThreadId);

 if (GpibThread == NULL) {
 printf ("Create GpibThread failed with error %x. Exiting application.\n",
 GetLastError());
 return -1;
 }

11

 // Create the thread to format and log the data
 LogThread = CreateThread (
 NULL, // default security
 0, // default stack size
 (LPTHREAD_START_ROUTINE)LogThreadFunction,
 NULL, // NULL parameter to the thread func
 0, // run thread immediately
 &ThreadId);

 if (LogThread == NULL) {
 printf ("Create LogThread failed with error %x. Exiting application.\n",
 GetLastError());
 return -1;
 }

 // Wait for both of the threads to exit
 {
 HANDLE ThreadHandles[2];
 ThreadHandles[0] = GpibThread;
 ThreadHandles[1] = LogThread;
 WaitForMultipleObjects(2, // number of handles to wait on
 ThreadHandles, // array of thread handles
 TRUE, // wait for ***all***
 INFINITE // wait forever
);
 }

 // Check the exit code of both threads
 {
 DWORD ExitCode;

 GetExitCodeThread (GpibThread, &ExitCode);
 if (ExitCode == -1) {
 printf ("GPIB thread failed.\n");
 }
 GetExitCodeThread (LogThread, &ExitCode);
 if (ExitCode == -1) {
 printf ("Log thread failed.\n");
 }
 }

 CloseHandle (GpibThread);
 CloseHandle (LogThread);
 CloseHandle (BufferFree);
 CloseHandle (DataReady);

 return 0;
}

DWORD GpibThreadFunction(LPDWORD Param)
{
 int ud; // handle of the device
 int counter; // used to count the number of measurements taken
 BOOL error = FALSE; // boolean used to indicate an error has occurred

 // Open handle to the device
 ud = ibdev (0, // connect board is gpib0
 3, // device primary address is 3
 0, // device doesn't use secondary addressing
 T10s, // I/O timeout period - 10 seconds
 1, // use EOI to mark the end of I/O writes
 0); // don't use an EOS character at the end of reads
 if (ud == -1) {
 printf ("ibdev call failed with ibsta = 0x%x, iberr = %d, ibcntl = %x.\n",
 ThreadIbsta(), ThreadIberr(), ThreadIbcntl());
 printf ("exit application\n");
 MoreDataComing = FALSE;
 return -1;
 }

 // While fewer than NUMBER_MEASUREMENTS have been acquired
 // continue getting more measurements.

12

 for (counter = 0; counter < NUMBER_MEASUREMENTS; counter++) {

 // Tell device to send a measurement
 ibwrt(ud, "SOUR:FUNC SIN; SENS:DATA?", 25);
 if (ThreadIbsta() & ERR) {
 printf ("Write of command to device failed!. Exit application.\n");
 error = TRUE;
 break;
 }
 // Wait forever for the buffer for the measurement to be available
 WaitForSingleObject (BufferFree, INFINITE);

 // Acquire the reading
 ibrd (ud, Measurement, 2000);
 if (ThreadIbsta() & ERR) {
 printf ("Read from device failed!. Exit application.\n");
 error = TRUE;
 break;
 }
 // Signal the LogThread that a reading is available
 SetEvent (DataReady);
 }

 // put the handle offline before exiting
 ibonl (ud, 0);

 MoreDataComing = FALSE;
 if (error) {
 return -1;
 }
 else {
 return 0;
 }
}

DWORD LogThreadFunction(LPDWORD Param)
{
 // While more data is coming from the GpibThread continue formatting
 // and logging.
 while (MoreDataComing) {

 // wait for the next data to be acquired by the GpibThread
 while (MoreDataComing) {
 // If WaitForSingleObject on DataReady returns WAIT_OBJECT_0,
 // the DataReady event has been signaled by the GpibThread.
 // In this case, the wait is only for 1000 milliseconds = 1 sec
 // instead of an infinite (no timeout) wait because the GPIB
 // instrument could fail and the reading might never be acquired.
 // If this error case happens, you want the LogThread to be able
 // to exit gracefully.
 if (WaitForSingleObject (DataReady, 1000) == WAIT_OBJECT_0) {
 break;
 }
 }
 // if there isn’t any more data coming, break out of the outer loop
 if (!MoreDataComing) {
 break;
 }

 // Format and display the data as necessary
 FormatAndLogMeasurement (Measurement);
 // Signal the GpibThread that the buffer is available for more data
 SetEvent (BufferFree);
 }
 return 0;
}

