

http://conf.msl.titech.ac.jp/Lecture/

統計力学 · 半導体

バンド構造 band.csv から、数値微分により $d^2E(k)/dk_2$ を求め、有効質量 m_e^* と k の関係をグラフに描け。

格子定数は a = 4.0 Å とする。

異なる精度の数値微分をし、有効質量の精度の比較をするとbetter。

PowerPoint 等 のプレゼンテーションファイルにして提出 期限: 今日の17:00までに できたところまでで可

p.138

7. 図4 有効質量

有効質量の量子力学的な意味 バンド理論の運動量 $< P >= m \frac{1}{\hbar} \frac{dE(k)}{dk}$ 電子の速度は群速度となる Energy / |h12| 1 1 $v_g(k) = \frac{d\omega(k)}{dk}$ バンド理論の運動方程式 0.5 $\begin{array}{c} \text{0.5} \quad \frac{d[\hbar k(t)]}{dt} = F = -eE \end{array}$ 0.3 -0.3 0.1 -0.5 -0.1 $2\pi/a$

Newton 力学と対応させる

 $\frac{d^2x}{dt^2} = \frac{dv(k)}{dt} = \frac{d}{dt}\frac{1}{\hbar}\frac{dE(k)}{dk} = \frac{1}{\hbar}\frac{d^2E(k)}{dk^2}\frac{dk}{dt} = \frac{1}{\hbar^2}\frac{d^2E(k)}{dk^2}F$

 $\frac{1}{m^*} = \frac{1}{\hbar^2} \frac{\partial^2 E_n(\mathbf{k})}{\partial k^2}$

k は逆格子の内部座標: 一般に [-½½] の範囲で表示される 単位変換 k_{real} = (2π/a) k

$$m^* = \hbar^2 \left(\frac{\partial^2 E_n(\mathbf{k})}{\partial k_{real}^2} \right)^{-1} = \hbar^2 \left(\frac{2\pi}{a} \right)^2 \left(\frac{\partial^2 E_n(\mathbf{k})}{\partial k^2} \right)^{-1}$$

数值計算: 微分

df(x) をコンピュータでどのように計算するか

微分 d を差分 Δ で置き換える $\frac{df(x)}{dx} \sim \frac{\Delta f(x)}{\Delta x} = \frac{f(x+h) - f(x)}{(x+h) - x} = \frac{f(x+h) - f(x)}{h}$

hを小さくすれば精度が上がる⇔ 桁落ち誤差

32bit浮動小数点 (~7桁):扱う最小数値の 5桁下が限界 64bit浮動小数点 (~16桁):扱う最小数値の 14桁下が限界

$$\frac{f(x+h) = f(x) + \frac{df(x)}{dx}h + \frac{1}{2}\frac{d^2f(x)}{dx^2}h^2 + O(h^3)}{\frac{f(x+h) - f(x)}{h} = \frac{df(x)}{dx} + \frac{1}{2}\frac{d^2f(x)}{dx^2}h + O(h^2)$$

$$\frac{\pounds}{2}$$

数値微分: 平均を取って精度を上げる $\frac{df(x)}{dx} \sim \frac{f(x+h) - f(x)}{h}$ dx誤差: $\frac{f(x+h) - f(x)}{h} = \frac{df(x)}{dx} + \frac{1}{2}\frac{d^2f(x)}{dx^2}h + \frac{1}{3!}\frac{d^3f(x)}{dx^3}h^2 + O(h^4)$ $\frac{df(x)}{dx} \sim \left| \frac{f(x+h) - f(x)}{h} + \frac{f(x) - f(x-h)}{h} \right| / 2 = \frac{f(x+h) - f(x-h)}{2^{h}}$ $f(x+h) = f(x) + \frac{df(x)}{dx}h + \frac{1}{2}\frac{d^2f(x)}{dx^2}h^2 + \frac{1}{2!}\frac{d^3f(x)}{dx^3}h^3 + O(h^4)$ $f(x-h) = f(x) - \frac{df(x)}{dx}h + \frac{1}{2}\frac{d^2f(x)}{dx^2}h^2 - \frac{1}{3!}\frac{d^3f(x)}{dx^3}h^3 + O(h^4)$ 誤差: $\frac{f(x+h) - f(x-h)}{2h} = \frac{df(x)}{dx} + \frac{1}{3!} \frac{d^3 f(x)}{dx^3} h^3 + O(h^4)$

二階微分

半導体: キャリア輸送

移動度とは?

$\sigma = en\mu$

Definition in solid-state physics

ー電子の運動方程式
$$F = m_e \left(\frac{d}{dt} v - \frac{1}{\tau} v \right) = qE$$

 m_e : 有効質量
 τ :運動量緩和時間 (散乱時間)
電子が持っている運動量が散乱を受けて
0 になる平均時間

定常状態での速度 $v = \mu E = \frac{e}{m_e} \tau E$ ドリフト速度 v_d :電界によって駆動される速度 ⇔熱速度、Fermi速度、拡散速度 ドリフト移動度 $\mu_d = \frac{v_d}{E} = \frac{e}{m_e} \tau$

ZnOの移動度

P. Wagner and R. Helbig, J. Phys. Chem. Solids, 35 (1974) 327

散乱機構と移動度の温度依存性

$$\tau = \tau_0 \varepsilon^{r-1/2}$$

音響フォノン散乱

音響フォノン散乱

光学フォノン散乱 T<<θ_n,高ドープ

(非縮退)

(縮退)

$$\mu = \frac{e}{m_e} \langle \tau \rangle = \mu_0 T^s$$

86

TRANSPORT PHENOMENA

[Ch. 3

TABLE	3.2.	$\tau = \tau_0 (\epsilon^*)^{r-1/2}$
-------	------	--------------------------------------

1/2 2/2	Scattering centers, r	τ _o	Notation used
$\tau = \tau_0 \varepsilon^{-1/2}, \ \mu \propto T^{-3/2}$	Acoustical vibrations (phonon theory), r = 0	$\frac{9\pi}{4\sqrt{2}}\frac{\hbar^4\omega^2M}{C^2a^8\left(m^*kT\right)^{8/2}}$	 ω - velocity of sound; M - atomic mass; C - Bloch constant; a - lattice parameter
$\tau = \tau_0 \mathcal{E}^{-1/2}, \ \mu \propto T^{-1}$	Acoustical vibrations (deformation potential theory), r = 0	$\frac{\pi \hbar^4 C_{11}}{\sqrt{2B_1^2} (m^* kT)^{1/2}}$	C_{II} - elastic constant for longitudinal vibrations; $E_1 = \Omega_0 dE_0 / d\Omega$;
$\tau = \tau_0 \varepsilon^0, \langle \tau \rangle \propto \left[\exp(\hbar \omega_0 / \hbar \omega_0 / $	kT)-1]		L ₀ - energy of allowed band edge; Ω ₀ - initial volume of unit cell before deformation
$\tau = \tau_0 \varepsilon^0, \left< \tau \right> \propto T^{1/2}$	Optical vibrations (T ≪θ _D) in heavily doped crystals, r= ⁴ / ₂	$\frac{a^{2}M}{2\pi \sqrt{2m^{4}}} \frac{\left(\hbar\omega_{0}\right)^{h_{1}}}{\left(\gamma Ze^{2}\right)^{2}} \times \left[\exp\left(\frac{\hbar\omega_{0}}{kT}\right) - 1\right] (1-f_{0})$	 ω_b - limiting frequency of longitudinal optical vibrations; Ze - ion charge; γ - factor representing the polarizability of ions; f - Fermi function; θ_D - Debye temperature
$\tau = \tau_0 \mathcal{E}^{5/2}, \mu \propto T^{5/2}$	Optical vibrations $(T \ll \theta_D)$ in lightly	$\frac{a^{\mathbf{a}}M}{2\pi\sqrt{2m^{\mathbf{*}}}}\frac{(\hbar\omega_{0})^{\mathbf{a}/\mathbf{a}}}{(\gamma Ze^{\mathbf{a}})^{\mathbf{a}}}\times$	

$(T \ll \theta_D)$ in heavily doped crystals, $r = \frac{1}{2}$	$\frac{\frac{\pi}{2\pi}\frac{m_{\theta_0}}{\sqrt{2m^{k}}}(\gamma Ze^{2})^{x}}{\times \left[\exp\left(\frac{\hbar\omega_{\theta}}{kT}\right)-1\right](1-f_{\theta})}$	 b) = Initially inequency of longitudinal optical vibrations; Ze - ion charge; γ - factor representing the polarizability of ions; f - Fermi function; θ_D - Debye temperature
Optical vibrations ($T \ll \theta_D$) in lightly	$\frac{a^3M}{2\pi\sqrt{2m^*}}\frac{(\hbar\omega_0)^{3/2}}{(\gamma Ze^2)^2}\times$	

光学フォノン散乱 $\tau = \tau_0 \varepsilon^0, \langle \tau \rangle \propto T^{1/2}$ T<<θ_n,低ドープ $\tau = \tau_0 \varepsilon^{3/2}, \quad \mu \propto T^{3/2}$ イオン化不純物 (非縮退) $\tau = \tau_0 \varepsilon^{3/2}, \quad \mu \propto T^0$ イオン化不純物 (縮退) $\tau = \tau_0 \varepsilon^0, \quad \mu \propto T^0$ 中性不純物

TABLE III. Approximate ϵ and T dependencies for electron-scattering mechanisms.

Scattering mechanism	Energy dependence of $\tau \tau$		Temperature dependence of $\mu^{\text{nondegen}}\mu^{\text{degen}}$	
Intravalley acoustic phonons	$\epsilon^{-1/2}$	T - 1	T - 3/2	T^{-1}
Intervalley optical phonons	$\epsilon^{-1/2}$	T^{-1}	T = 3/2	T - I
Ionized impurities	$\epsilon^{3/2}$	Τ"	$T^{3/2}$	T^0
Alloy disorder	$\epsilon^{-1/2}$	T^{0}	$T - \frac{1}{2}$	T
Neutral impurities	€ ⁰	T^{o}	T^0	T^0

Heavily doped semiconductor, P.86

A model for the high-temperature transport properties of heavily doped n-type silicongermanium allovs, JAP 69 (1991) 331 Fig. 3

Hall効果と磁気抵抗効果

電荷 q (電子: -e, 正孔: +e) Hall 第

図 3·24 Hall 効果の実験

キャリア極性(R_Hの符号)、キャリア濃度n_{Hall}、移動度µ_{Hall}

2端子の測定では、電極界面の抵抗を拾ってしまう 低抵抗試料では、抵抗を過大評価する

4端子測定にすると、電極の接触抵抗の影響がない

電流が電圧計や試料ホルダーを流れる可能性 ・超高抵抗な電圧計:エレクトロメータ、ピコアンメータ

では、4端子法はどれくらい大丈夫か?

● 試料の抵抗が極端に高い場合

● 電流が電圧計や試料ホルダーを通って流れてしまう可能性がある

4探針法による伝導度の評価法

I.B. Valdes, Proc. IRE 42, 420 (1954).
F.M. Smits, The Bell System Technical Journal 37, 711 (1958).
S. Murashima, F. Ishibashi, Jpn. J. Appl. Phys. 9, 1340 (1970).

無限にひろがったシートの4揀針法 $\rho_s = \frac{V}{T} - \frac{\pi}{4n^2}$

第3表

厚みいの薄い試料の体抵抗率分満定

Van der Pauw法

L.J. van der Pauw, Philips. Res. Rep. 13 (1958) 1.

磁場を印加しないで、電極AB間に電流 I_{AB} を流し、電極CD間の電圧 V_{CD} を測定

 $R_{AB,CD} = V_{CD} / I_{AB}$ 電極BC間に電流 I_{BC} を流し、電極DA間の電圧 V_{DA} を測定

 $R_{BC,DA} = V_{DA} / I_{BC}$ 電極AC間に電流 I_{AC} を流し、試料面に垂直に磁束密度 B_z の磁場を印加 電極BD間に生じる電圧を V_{BD} A

$$\int R_{AC,BD} = V_{BD} / I_{AC}$$

$$\rho = \frac{\pi d}{\ln 2} \cdot \frac{(R_{AB,CD} + R_{BC,DA})}{2} \cdot f(R)$$

$$n = \frac{B}{q \cdot d \cdot \triangle R_{AC,BD}} \qquad \mu_{\text{Hall}} = \frac{d}{B_z} \cdot \frac{\triangle R_{AC,BD}}{\rho}$$

f(*R*):形状補正係数

 $\frac{\exp(\ln 2/f)}{2} = \cosh\left\{\frac{\ln 2}{f}\frac{R-1}{R+1}\right\}$

表2 Van der Pauw 法における形状補正係数 f

$R_{AB,CD} / R_{BC,DA}$	f	$R_{AB,CD} / R_{BC,DA}$	f
1.0	1.0	1.4	0.9903
1.1	0.9992	1.5	0.9860
1.2	0.9971	2.0	0.9603
1.3	0.9941	3.0	0.9067

van der Pauw法

L.J. van der Pauw, A method of measureing specific resistivity and Hall effect of discs of arbitrary shape, Phil. Res. Repts., **13**, 1 (1958)

It will be shown that the specific resistivity and the Hall effect of a flat sample of arbitrary shape can be measured without knowing the current pattern if the following conditions are fulfilled:

- (a) The contacts are at the circumference of the sample.
- (b) The contacts are sufficiently small.
- (c) The sample is homogeneous in thickness.
- (d) The surface of the sample is <u>singly connected</u>, i.e., the sample does not have isolated holes.

(a) Preferred

Square or rectangle: contacts at the edges or inside the perimeter

(c) Not Recommended

学振166委員会 チュートリアル 2015.4.24

Van der Pauw法によるHall電圧符号反転

Causes of incorrect carrier-type identification in van der Pauw–Hall measurements

Oliver Bierwagen,^{a)} Tommy Ive, Chris G. Van de Walle, and James S. Speck

APPLIED PHYSICS LETTERS 93, 242108 (2008)

磁場反転、電流反転測定で誤差を相殺

Hall電圧電極がずれている 試料の Δ RI だけ電圧がずれる $V_{obs}^{+} = BIR_{Hall}/t + I\Delta R$

・磁場を反転させて測定 $V_{obs}^{-} = -BIR_{Hall}/t + I\Delta R$

$$= (V_{obs}^{+} - V_{obs}^{-})/2 = -BIR_{Hall}/t$$

 ΔR

六端子Hallバー

図 3·24 Hall 効果の実験

四端子測定で抵抗率を測定 電圧端子(C,D)位置を確定する必要

・パターニングが必要 ・キャリアの伝導経路をかなり限定できる ・四端子測定で抵抗率を測定 ・複数のHall電圧端子の組み合わせで 信頼性を上げる

Non-equilibrium statistics dynamics

非平衡統計力学

熱平衡状態での計算手順

- 1. パラメータ(m_e*)を決める
- 2. 関連する定数(N_c, D_{c0}など)を計算する
- 3. 状態密度D(E)を計算する
- 0Kで中性の状態を考え、考えているエネルギー範囲での 電子数 N_eを計算する (電荷中性条件)。
- 5. $E_{\rm F}$ が場所によらないとして、バンド図を描く。 CBM,VBMのエネルギー $E_{\rm CBM}(x), E_{\rm VBM}(x)$ が決めるべきパラメータ。
- 6. $E_{\text{CBM}}(x)$, $E_{\text{VBM}}(x)$ から過剰電荷密度 $\rho_{\text{e}}(x) = N_{\text{c}}\exp(-(E_{\text{CBM}}(x)-E_{\text{F}})/k_{\text{B}}T)$ $\rho_{\text{h}}(x) = N_{\text{v}}\exp(-(E_{\text{F}}-E_{\text{VBM}}(x))/k_{\text{B}}T)$ を計算する。
- 7. Possisonの方程式

 $d^{2}E_{CBM}(x)/dx^{2} = e(-\rho_{e}(x)+\rho_{h}(x)+N_{D}^{+}(x)-N_{A}^{-}(x))/\epsilon$ を満足するように、5,6を自己無撞着に解く。

非平衡状態での計算手順

平衡状態:マクロな物性の時間変化はない。系は閉じている。 定常状態:マクロな物性の時間変化はない。系の外部に対して エネルギーや粒子の出入りがあり、平衡状態ではない。

- ・電子が流れている: 定常状態ではあるが、平衡状態ではない
- ・バイアス、温度分布、etc.: 熱平衡が不成立
- ・ $E_{\rm F}$ が一定という条件が使えない:化学平衡が不成立

- Boltzmannの輸送理論
- ・ 電荷(電流)連続の方程式

非平衡状態でのキャリアの分布

$$\frac{d(n+\Delta n)}{dt} = \frac{1}{e} \nabla \mathbf{J}_n + G_n - U_n \qquad \qquad \mathbf{J} = eD\nabla n + en\frac{e\langle \tau \rangle}{m_e^*} \mathbf{E}$$

擬フェルミ準位

$$n = n_0 + \Delta n = N_c \exp\left(-\frac{E_c - E_{Fn}}{k_B T}\right) \qquad p = p_0 + \Delta p = N_v \exp\left(-\frac{E_{Fp} - E_v}{k_B T}\right)$$

非平衡統計物理学

熱平衡状態の電子分布

統計分布関数: Fermi-Dirac分布関数 $f_0(E) = \frac{1}{1 + \exp[(E - E_{E0})/k_BT]}$

エネルギー *E* をもつ電子が占めることの D(E)できる状態数:状態密度 実際に何個の電子がエネルギー *E* の状 $n_0(E) = f_0(E)D(E)$ 態を占めているか?

非平衡状態: 統計分布関数f(E, r, k, t) を求めることが必要

 $f(E,\mathbf{r},\mathbf{k},t) = f_0(E) + f_1(E)$

ボルツマンの輸送方程式

Boltzmann equation

$$\frac{df}{dt} = \left(\frac{\partial f}{\partial t}\right)_{r,k} + \frac{dr}{dt}\nabla_r f + \frac{dk}{dt}\nabla_k f$$
$$\mathbf{F} = \hbar \frac{d\mathbf{k}}{dt} \qquad \mathbf{v}_{\mathbf{k}} = \frac{d\mathbf{r}}{dt}$$

外力として電場 E を考える場合

$$\frac{df}{dt} = \left(\frac{\partial f}{\partial t}\right)_{r,k} + v_k \nabla_r f - e \frac{E}{\hbar} \nabla_k f$$

熱電デバイス: 拡散電流 (熱拡散、密度拡散)

同じ材料の両端の温度を変える $T_{\rm H}, T_{\rm L}$ 電子は化学ポテンシャル ($E_{
m F}$) が均一になるように再分布

金属: 電子密度は T で変わらない 運動エネルギー ~ $E_F^0 + \frac{1}{2} m {v_{th}}^2$ $\langle v_x \rangle \sim \frac{1}{2} kT$ 温度による速度差により、高温側から低温側に拡散

半導体:電子密度 $N_C \exp\left(-\frac{E_C - E_F}{kT}\right)$ 温度による電子密度差により、高温側から低温側に拡散

Boltzmann方程式: 散乱の緩和時間近似

Boltzmann方程式 $\frac{df}{dt} = \left(\frac{\partial f}{\partial t}\right)_{r,k} + v_k \nabla_r f - e \frac{E}{\hbar} \nabla_k f$ $\frac{df}{dt} = -\frac{f-f_0}{\tau}$

Boltzmann-Bloch equation (for steady state)

$$-\frac{f - f_0}{\tau} = \mathbf{v_k} \nabla_{\mathbf{r}} f + \frac{\mathbf{F}}{\hbar} \nabla_{\mathbf{k}} f$$
$$-\frac{f - f_0}{\tau} = \left(\frac{\partial f}{\partial t}\right)_{t, \mathbf{r}, \mathbf{k}} + \mathbf{v_k} \nabla_{\mathbf{r}} f + \mathbf{v_k} \mathbf{F} \frac{\partial f}{\partial E}$$

$$f \sim f_0 - \tau \left(\frac{\partial f_0}{\partial t}\right)_{t,r,k} - \tau v_k \nabla_r f_0 - \tau v_k F \frac{\partial f_0}{\partial E}$$

電子伝導の基礎方程式

平衡状態のフェルミ準位: 電荷中性条件 $\int_{E_C}^{\infty} D_C(E) f(E) dE + N_A^- = \int_{E_C}^{\infty} D_V(E) [1 - f(E)] dE + N_D^+$

電位と電荷分布の関係:ポアソンの方程式

$$\nabla^2 \varphi(x) = \frac{\rho(x)}{\varepsilon}$$

 $\rho(x) = -e[n(x) + N_A^{-}] + e[p(x) + N_D^{+}]$
 $n(x) = \int_{E_C}^{\infty} D_C(E)f(E)dE \quad p(x) = \int_{-\infty}^{E_V} D_V(E)[1 - f(E)]dE$

電荷の分布:輸送方程式

$$f \sim f_0 - \tau \left(\frac{\partial f_0}{\partial t}\right)_{t,\mathbf{r},\mathbf{k}} - \tau \mathbf{v}_{\mathbf{k}} \nabla_{\mathbf{r}} f_0 - \tau \mathbf{v}_{\mathbf{k}} \mathbf{F} \frac{\partial f_0}{\partial E}$$

バンド構造と電界 $\mathbf{E}_e = -\nabla_{\mathbf{r}} E_C$ 有効質量近似 $E - E_C = \frac{\hbar^2}{2m_e^*} \mathbf{k}^2$

$$f \sim f_0 - \tau \left(\frac{\partial f_0}{\partial t}\right)_{t,\mathbf{r},\mathbf{k}} - \tau \mathbf{v}_{\mathbf{k}} \nabla_{\mathbf{r}} f_0 - \tau \mathbf{v}_{\mathbf{k}} \mathbf{F} \frac{\partial f_0}{\partial E} = f_0 + e \tau \mathbf{v}_{\mathbf{k}} \mathbf{E} \frac{\partial f_0}{\partial E}$$

$$\mathbf{J} = -e \int \mathbf{v}_{\mathbf{k}} dk_{x} dk_{y} dk_{z}$$

= $-e \int \mathbf{v}_{\mathbf{k}} D(E) f(E) dE$
= $-e \int \mathbf{v}_{\mathbf{k}} D(E) \left[f_{0} + e\tau \mathbf{v}_{\mathbf{k}} \mathbf{E} \frac{\partial f_{0}}{\partial E} \right] dE$
= $-e \int \mathbf{v}_{\mathbf{k}} D(E) \left[e\tau \mathbf{v}_{\mathbf{k}} \mathbf{E} \frac{\partial f_{0}}{\partial E} \right] dE$

$$J_{\chi} = -e^2 \int v_{\chi}^2 \tau(E) D(E) \frac{\partial f_0}{\partial E} dE \cdot E_{\chi} = \frac{e^2}{k_B T} \int v_{\chi}^2 \tau(E) D(E) f_0 (1 - f_0) dE \cdot E_{\chi}$$

$$\frac{\partial f_0}{\partial E} = -\frac{1}{k_B T} f_0 (1 - f_0)$$

伝導度、平均緩和時間、移動度

$$\sigma_{xx} = \frac{e^2}{k_B T} \int v_x^2 \tau(E) D(E) f_0 (1 - f_0) dE$$

$$= \frac{2e^2}{3m_e^2 k_B T} \int (E - E_0) \tau(E) D(E) f_0 (1 - f_0) dE$$

$$E - E_0 = \frac{1}{2} m_e^* v_k^2 = \frac{3}{2} m_e^* v_x^2$$

$$\sigma_{xx} = en \mu_{xx} = en \frac{e}{m_e^*} \langle \tau \rangle$$

$$n = \int D(E) f_0(E) dE$$

$$\langle \tau \rangle = -\frac{2e}{3} \int (E - E_0) \tau(E) D(E) \frac{\partial f_0}{\partial E} dE / \int D(E) f_0(E) dE$$

$$\mu_{xx} = \frac{e}{m_e^*} \langle \tau \rangle$$

Conductivity of metal

寺崎一郎著、熱電材料の物質科学、内田老鶴圃 (2017)

$$\sigma_{xx} = \frac{2e^2}{3m_e^* k_B T} \int (E - E_0) \tau(E) D(E) f_0 (1 - f_0) dE$$
$$D(E) dE = \frac{2}{(2\pi)^3} 4\pi k^2 dk = \frac{\sqrt{2}m^{2/3}}{\pi^2 \hbar^3} E^{1/2} dE$$

$$\sigma = -\frac{e^2}{k_B T} \int (v \otimes v) \tau(E) D(E) \frac{\partial f_0}{\partial E} dE \qquad (v \otimes v)_{ij} = v_{ij}$$
$$= \frac{2e^2}{(2\pi)^3} \int (v \otimes v) \tau(k) f_0 (1 - f_0) dE$$
$$\sigma_{xx} = \frac{2e^2}{(2\pi)^3} \int v_x^2 \tau(k) \left(-\frac{\partial f_0}{\partial E}\right) dE = e^2 \tau D(E_F) v_x^2$$
$$= \frac{1}{3} e^2 \tau D(E_F) v_F^2: \text{ Electrons around } E_F \text{ can contribute conduction}$$

$$D(E_F) = \frac{\sqrt{2}m^{2/3}}{\pi^2\hbar^3} E_F^{1/2}$$
を代入すると、
 $\sigma_{xx} = \frac{n}{m}e^2\tau$: Usual relation

- --

Transport theory: Relaxation time approx.

Carrier density

$$n_e = \int_{E_C}^{\infty} D_C(E) f_e(E) dE$$

Conductivity and Mobility

$$\sigma_{x} = en_{e} \left[\frac{e}{m_{e}^{*}} \langle \tau^{1} \rangle \right] \longrightarrow \mu_{drift}$$

$$\left\langle \tau^{k} \right\rangle = -\frac{2}{3} \int_{E_{C}}^{\infty} (E - E_{m}) \tau(E)^{k} D_{C}(E) \frac{\partial f_{e}(E)}{\partial E} dE / n_{e}$$

$$\tau(E, T) = \tau_{0} T^{p} (E - E_{m})^{r-1/2}$$

$$M \gtrsim (L \triangleq \Phi \oplus H, \tau \in L, p = 0, r = 1/2)$$

Hall effect: Boltzmann equation 太田英二、坂田亮著、半導体の電子物性光学、培風館 (2005)

$$\boldsymbol{J} = \frac{e^2 n}{m_e^*} \left[\left\langle \frac{\tau}{1 + (\omega_c \tau)^2} \right\rangle \boldsymbol{E} + \left(\frac{e}{m_e^*} \right)^2 \left\langle \frac{\tau^2}{1 + (\omega_c \tau)^2} \right\rangle \boldsymbol{B}(\boldsymbol{B} \cdot \boldsymbol{E}) + \frac{e}{m_e^*} \left\langle \frac{\tau^2}{1 + (\omega_c \tau)^2} \right\rangle \boldsymbol{E} \times \boldsymbol{B} \right]$$

When
$$B \cdot E = 0$$
, $\omega_c \tau \ll 1$
 $J = en\mu \left[\langle \tau \rangle E + \frac{e}{m_e^*} \langle \tau^2 \rangle E \times B \right] = \sigma \left[E + \frac{e}{m_e^*} \frac{\langle \tau^2 \rangle}{\langle \tau \rangle} E \times B \right]$
 $J_x = \sigma E_x + \sigma \mu \frac{\langle \tau^2 \rangle}{\langle \tau \rangle^2} E_y B_z$
 $J_y = \sigma E_y - \sigma \mu \frac{\langle \tau^2 \rangle}{\langle \tau \rangle^2} E_x B_z = 0 \Longrightarrow E_y = \frac{e}{m_e^*} \frac{\langle \tau^2 \rangle}{\langle \tau \rangle} E_x B_z$
 $J_z = \sigma E_z$
 $E_y = -\frac{\frac{F_H \mu}{\sigma} B_z J_x}{1 + (F_H \mu)^2 B_z^2} = -\frac{1}{en} B_z J_x$
 $R_H = -\frac{V_H}{I_x} \frac{d}{B_z}$ (for electron)
 $F_H = \frac{\langle \tau^2 \rangle}{\langle \tau \rangle^2}$: Hall factor $\mu_H = F_H \mu$: Hall mobility

Hall効果

 $R_{H} = F_{\text{Hall}} / qn \quad n_{Hall} = n_{e} / F_{Hall}$ $\mu_{Hall} = \mu_{drift} F_{Hall}$ Hall factor $F_{Hall} = \langle \tau^{2} \rangle / \langle \tau^{1} \rangle^{2} : 0.9 \sim 2$

$$\langle \tau^k \rangle = -\frac{2}{3} \int_{E_c}^{\infty} (E - E_m) \tau^k(E) D_C(E) \frac{\partial f_e(E)}{\partial E} dE / n_e$$

緩和時間のエネルギー依存性
=> ドリフト移動度とHall移動度のずれ

Hall因子 F_{Hall}

 $R_H = F_{Hall} / qn$ F_{Hall} : 散乱機構に依存

いろいろな移動度

・ドリフト移動度 (定義): μ_d = E / v_{drift}

•伝導度移動度: μ = σ / (en) どうやってnを測定?

・Hall移動度: Hall効果からHall係数R_Hを測定 $V_H = R_H I_x B_Z / d, R_H = 1 / en_{Hall} = \gamma / en$ $\mu_{Hall} = \sigma / (en_{Hall}) = \gamma \mu_d$ ($\gamma = 1 - 2$: Hall因子, 散乱因子)

•光学移動度:赤外・マイクロ波領域の自由電子吸収から測定

·MOSFET移動度

有効移動度、電界効果移動度、飽和移動度

·Time-of-flight (TOF) 移動度

パルス電圧・レーザー励起などで薄いシートキャリアを生成し、 対向電極に到達する時間から移動度を測定する

 $v = \mu E = \mu V/L$, $\Delta t = L / v$: $\mu_{TOF} = L^2/(V\Delta t)$

·磁気抵抗効果移動度

有効質量に与える影響: Band effective mass

有効質量に与える影響:電子一格子相互作用

電子はホストのイオンと相互作用する結果、 有効質量が重くなる => Polaron 相互作用が弱く、電子は局在化していない: Large polaron 相互作用が強く、電子は単位格子内に局在化: Small polaron

H. Frolich: Adv. Phys. 1954, 3, p. 325.

いろいろな有効質量 バンド有効質量:電子が動いてもバンド構造に影響しない $\frac{1}{m^*} = \frac{1}{\hbar^2} \frac{\partial^2 E_n(\mathbf{k})}{\partial k^2}$

キャリア有効質量:電子が動くと格子イオンと相互作用

$$\mu = \frac{e\tau}{m_e^*} \qquad \frac{m_e^*}{m^*} = 1 + \frac{\alpha}{6} + 0.0236\alpha^2$$

α: Fröhlich coupling constant GaAs: 0.068 SrTiO₃ 3.77

状態密度有効質量: m_e*の異方性、多重度を考慮

$$D(E) = M_C \frac{\sqrt{2}}{\pi^2} \frac{\sqrt{E - E_C}}{\hbar^3} m_{de}^{3/2}$$

有効質量からわかる量

移動度、伝導度
$$\mu = \frac{e\tau}{m_e^*}$$
 $\sigma = eN_{free}\mu$

状態密度 *M*_cは等価なLUMOのk点の数。

$$N(E) = M_C \frac{\sqrt{2}}{\pi^2} \frac{\sqrt{E - E_C}}{\hbar^3} m_{de}^{3/2}$$

バースタイン・モスシフト
(縮退半導体のE_F) $\Delta E_g^{BM} = \frac{\hbar^2}{m_{de}} \left(\frac{3N_e}{16\sqrt{2}\pi}\right)^{2/3}$

有効状態密度 スピン以外の縮退のない等方的なsバンドでは、 状態密度有効質量m_{de}はキャリア有効質量m_e*に等しい

$$N_C = 2 \left(\frac{2\pi m_{de} k_B T}{h^2}\right)^{3/2} M_C$$

熱速度

熱速度
$$\frac{1}{2}m_e^* v_{th}^2 = \frac{3}{2}k_BT$$
 $v_{th} = \sqrt{3k_BT/m_e^*}$
フェルミ速度 $\frac{1}{2}m_e^* v_F^2 = E_F - E_C$ $v_F = \sqrt{2(E_F - E_C)/m_e}$