

基底関数の一次結合 LCAO/Tight-binding/平面波法

重要な近似法: 関数の一次結合

完全基底系:任意の関数は完全基底系の関数の一次結合に展開できる 例:任意の三次元ベクトルrは基底ベクトルa,b,cを使って

 $\mathbf{r} = C_a a + C_b b + C_c c$ と表せる 例: 任意の複素数 c^* は基底ベクトル 1, i を使って $\mathbf{c}^* = C_1 1 + C_i i$ と表せる 例: フーリエ変換: 任意の関数 f(x) は基底関数 e^{ikx} を使って $f(x) = \int c(k) \exp(ikx) dk$ と表せる

完全基底系で展開できない場合は、近似となる:

正確な波動関数 Ψ を ある関数群 (何でもいい) un の一次結合で近似する

$$\Psi = \sum_{n=0}^{N} C_n u_n$$

 $u_n: 基底関数$
平面波 : Plain Wave (PW)
原子の波動関数 : Atomic Orbital (AO)
Gauss型 : Gaussian-type Orbital (GTO)
Slater型 (指数関数): Slater-type Orbital (STO)
一電子波動関数、基底状態の波動関数、など

基底関数を用いた一般解法

正確な波動関数 ¥を基底関数unの一次結合であらわす

$$\phi_i(\mathbf{r}_i) = \sum_{n=0}^{\infty} C_{ni} u_n(\mathbf{r}_i)$$

変分原理: エネルギーの期待値を係数 C_n あるいは C_m *で最小化 $< E >= \frac{\sum_{m} \sum_{n} C_m^* C_n \langle u_m | H | u_n \rangle}{\sum_{n} C_n^* C_n \langle u_m | u_n \rangle}$ $\sum_{m} C_m \langle u_n | H | u_m \rangle - E \sum_{m} C_m \langle u_n | u_m \rangle = 0$

変分法: Roothaan-Hall方程式

リッツの変分原理:

任意の波動関数 Ψ に対するハミルトニアン H の期待値 <H> は 基底状態のエネルギー固有値 E₀ よりも大きいか等しい

 $< H >= \langle \psi | H | \psi \rangle / \langle \psi | \psi \rangle \ge E_0$

正確な波動関数Ψを基底関数 un の一次結合であらわす

$$\Psi = \sum_{n=0}^{\infty} C_n u_n$$

変分原理により、エネルギーの期待値を係数 C_n あるいは C_m *で最小化 $< E >= \frac{\sum_{m} \sum_{n} C_m^* C_n \langle u_m | H | u_n \rangle}{\sum_{n} C_n^* C_n \langle u_m | u_n \rangle}$ $\sum_{m} C_m \langle u_n | H | u_m \rangle - E \sum_{m} C_m \langle u_n | u_m \rangle = 0$

m m 量子計算の方程式は多くの場合、固有値問題に帰着する

Roothaan-Hall方程式

$$\sum_{m} C_{m} \langle u_{n} | H | u_{m} \rangle - E \sum_{m} C_{m} \langle u_{n} | u_{m} \rangle = 0$$

HC = ESC

$$\begin{vmatrix} H_{11} - ES_{11} & H_{12} - ES_{12} & \cdots & H_{1n} - ES_{1n} \\ H_{21} - ES_{21} & H_{22} - ES_{ss} & H_{2n} - ES_{2n} \\ \vdots & \ddots & \vdots \\ H_{n1} - ES_{n1} & H_{n2} - ES_{n2} & \cdots & H_{nn} - ES_{nn} \end{vmatrix} = 0$$

$$\begin{array}{c} \\ \pm & & \\ \\ \pm & \\ \\ \pm & \\ \\ \end{array}$$

重なり積分(transfer integral) $S_{nm} = \langle u_n | u_m \rangle$

環状水素分子H₃

直線状 $\begin{pmatrix} \varepsilon_{1s} & h_{12} & 0 \\ h_{12} & \varepsilon_{1s} & h_{12} \\ 0 & h_{12} & \varepsilon_{1s} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \varepsilon \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$

環状
$$\begin{pmatrix} \varepsilon_{1s} & h_{12} & h_{12} \\ h_{12} & \varepsilon_{1s} & h_{12} \\ h_{12} & h_{12} & \varepsilon_{1s} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \varepsilon \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$$

$$c_{i}^{(l)} = \exp(ik_{l}x_{j})$$

$$k_{l} = \frac{2\pi}{Na}l \quad l \downarrow 0 \sim 2 \sigma 整数, a \downarrow l \oplus \mathcal{F}$$

E(k_l) = $\varepsilon_{1s} + 2h_{12}\cos(k_{l}a)$

直線状H₃分子のエネルギー準位 $\varepsilon_{1s} - \sqrt{2}|h_{12}|$ ε_{1s} $\varepsilon_{1s} + \sqrt{2}|h_{12}|$ ε_{1s}

1種類の波動関数が周期的に 並んでいる場合の解

環状 H_3 分子の結果は、N個の水素原子が環状に繋がっている H_N 分子にそのまま拡張できる。

$$\begin{pmatrix} \varepsilon_{1s} & h_{12} & 0 & 0 & h_{12} \\ h_{12} & \varepsilon_{1s} & h_{12} & 0 & 0 \\ 0 & h_{12} & \varepsilon_{1s} & \ddots & \vdots \\ 0 & 0 & \ddots & \ddots & h_{12} \\ h_{12} & 0 & \cdots & h_{12} & \varepsilon_{1s} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_N \end{pmatrix} = \varepsilon \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_N \end{pmatrix}$$

$$k_l = \frac{2\pi}{Na} l \quad c_i^{(l)} = \exp\left(ik_l x_j\right)$$

$$\phi_{kl} = \sum_{j} \varphi_{j} \exp(ik_{l}x_{j})$$
$$E(k_{l}) = \varepsilon_{1s} + 2h_{12}\cos(k_{l}a)$$

Blochの定理

ベンゼン(C₆H₆)の波動関数とBlochの定理

波数ベクトルと結晶軌道

$$\phi_{kl} = \sum_{j} \exp(ikx_{j}) \cdot u_{j}(x - x_{j})$$
Blochの定理

Γ点 (k=0): 結合性

任意のk≠0: 1/kに比例する数(2π/ka)の 単位格子を考慮している

LCAOバンドの計算: 一般理論

LCAOバンドの計算式

$$\Psi_k(\mathbf{r}) = \sum_{nx, ny, nz} \exp(i\mathbf{k} \cdot \mathbf{R}_n) \left(\sum_{i}^{unit cell} c_i \exp(i\mathbf{k} \cdot \mathbf{r}_i) \phi_i(\mathbf{r}_i + \mathbf{R}_n) \right)$$

$$\left\langle \Psi_{k}(\mathbf{r})|H|\Psi_{k}(\mathbf{r})\right\rangle = \left\langle \sum_{nx,ny,nz} \exp(i\mathbf{k}\cdot\mathbf{R}_{nx,ny,nz}) \left(\sum_{i}^{unit \, cell} c_{i} \exp(i\mathbf{k}\cdot\mathbf{r}_{i})\phi_{i}(\mathbf{r}_{i}) \right) |H| \sum_{nx,ny,nz} \exp(i\mathbf{k}\cdot\mathbf{R}_{n}) \left(\sum_{i}^{unit \, cell} c_{i} \exp(i\mathbf{k}\cdot\mathbf{r}_{i})\phi_{i}(\mathbf{r}_{i}+\mathbf{R}_{n}) \right) \right\rangle$$

$$\left\langle \Psi_{k}(\mathbf{r}) | H | \Psi_{k}(\mathbf{r}) \right\rangle = \sum_{i,i'}^{unitcell} c \ast_{i'} c_{i} \sum_{n,n'} e^{i\mathbf{k} \cdot (\mathbf{R}_{n} - \mathbf{R}_{n'})} e^{i\mathbf{k} \cdot (\mathbf{r}_{i'} - \mathbf{r}_{i})} \left\langle \phi_{i'}(\mathbf{r}_{i'} + \mathbf{R}_{n'}) | H | \phi_{i}(\mathbf{r}_{i} + \mathbf{R}_{n}) \right\rangle$$

$$\left\langle \Psi_{k}(\mathbf{r}) | \Psi_{k}(\mathbf{r}) \right\rangle = \sum_{i,i'}^{unitcell} c \ast_{i'} c_{i} \sum_{n,n'} e^{i\mathbf{k} \cdot (\mathbf{R}_{n} - \mathbf{R}_{n'})}$$

$$\left\langle \Psi_{k}(\mathbf{r}) | H | \Psi_{k}(\mathbf{r}) \right\rangle = N \sum_{i,i'}^{unit cell} c *_{i'} c_{i} \sum_{n} {}^{i\mathbf{k} \cdot (\mathbf{r}_{i'} + \mathbf{R}_{n} - \mathbf{r}_{i})} \left\langle \phi_{i'}(\mathbf{r}_{i'}) | H | \phi_{i}(\mathbf{r}_{i} + \mathbf{R}_{n}) \right\rangle$$

$$\left\langle \Psi_{k}(\mathbf{r}) | \Psi_{k}(\mathbf{r}) \right\rangle = N \sum_{i}^{unit cell} c *_{i} c_{i}$$

Roothaan-Hall方程式

$$\sum_{m} C_{m} \langle u_{n} | H | u_{m} \rangle - E \sum_{m} C_{m} \langle u_{n} | u_{m} \rangle = 0$$

HC = ESC

$$\begin{vmatrix} H_{11} - ES_{11} & H_{12} - ES_{12} & \cdots & H_{1n} - ES_{1n} \\ H_{21} - ES_{21} & H_{22} - ES_{ss} & H_{2n} - ES_{2n} \\ \vdots & \ddots & \vdots \\ H_{n1} - ES_{n1} & H_{n2} - ES_{n2} & \cdots & H_{nn} - ES_{nn} \end{vmatrix} = 0$$

$$\begin{array}{c} \\ \pm & & \\ \\ \pm & \\ \\ \pm & \\ \\ \end{array}$$

重なり積分(transfer integral) $S_{nm} = \langle u_n | u_m \rangle$

表 20-1 原子間行列要素の Slater と Koster (1954)の表で,左の状態から右の状態へ 向かうベクトルの方向余弦, *l*, *m*, *n* の関数として表してある. これら以外の行 列要素は指標を入れ換えると求まる. これらの表式と, *f* 及び *g* 軌道を含ん だ具体的な表式に対する一般的公式は,最近 Sharma (1979)が与えている.

$E_{s,s} =$	$V_{ss\sigma}$	
$E_{s,x} =$	$lV_{sp\sigma}$	
$E_{x, x} =$	$l^2 V_{pp\sigma} + (1 - l^2) V_{pp\pi}$	
$E_{x, y} =$	$lmV_{pp\sigma} - lmV_{pp\pi}$	
$E_{x, z} =$	$lnV_{pp\sigma} - lnV_{pp\pi}$	
$E_{s,xy} =$	$3^{1/2} lm V_{sd\sigma}$	
$E_{s, x^2-y^2} =$	$\frac{1}{2} 3^{1/2} (l^2 - m^2) V_{sd\sigma}$	
$E_{s, 3z^2-r^2} =$	$[n^2 - \frac{1}{2}(l^2 + m^2)]V_{sd\sigma}$	
$E_{x, xy} =$	$3^{1/2}l^2mV_{pd\sigma} + m(1-2l^2)V_{pd\pi}$	
$E_{x, yz} =$	$3^{1/2} lmn V_{pd\sigma} - 2 lmn V_{pd\pi}$	
$E_{x, zx} =$	$3^{1/2}l^2nV_{pd\sigma} + n(1-2l^2)V_{pd\pi}$	
$E_{x, x^2-y^2} =$	$\frac{1}{2} 3^{1/2} l(l^2 - m^2) V_{pd\sigma} + l(1 - l^2 + m^2) V_{pd\pi}$	
$E_{y, x^2 - y^2} =$	$\frac{1}{2} 3^{1/2} m (l^2 - m^2) V_{pd\sigma} - m (1 + l^2 - m^2) V_{pd\pi}$	
$E_{z, x^2 - y^2} =$	$\frac{1}{2} 3^{1/2} n (l^2 - m^2) V_{pd\sigma} - n (l^2 - m^2) V_{pd\pi}$	
$E_{x, 3z^2 - r^2} =$	$l[n^2 - \frac{1}{2}(l^2 + m^2)]V_{pd\sigma} - 3^{1/2}ln^2V_{pd\pi}$	
$E_{y, 3z^2-r^2} =$	$m[n^2 - \frac{1}{2}(l^2 + m^2)]V_{pd\sigma} - 3^{1/2}mn^2V_{pd\pi}$	

Tight-binding法: パラメータ

), c(meV) =			単純な	原子	遷移金員	¢ j	穀金属						パラメー	-9-		
古	体	元	素	表											H 1	He 2	Ľ,	Li 3		Atomi	c No.	Atomic N	lo. 原·	子番号				隣接原	子問距離			定 数	t
0	25	S.X		f.											1.00	23.4	2.2, 3.9	5.48 1.13 0.92 0.68		$\frac{-\varepsilon_{\rho}(e^{i})}{k_{F}(\dot{A})}$ $\frac{k_{F}(\dot{A})}{r_{i}(\dot{A})}$	v)	$r_d(\bar{A}) k_d(\bar{A}^{-1}) r_o(\bar{A}) r_i(\bar{A})$	r _e () r _o () r _i (Å	() () ()	-	共有性:d イオン性:d 金属性:r 希ガス:d			$d = \vec{d}$ $d = r_i^c + r_i^a$ $r_0^3 k_F^3 = 9\pi Z/4$ $d = 1.12\sigma$		$h^2/m = 7.62 \text{ eV}-\dot{A}^2$ $e^2 = 14.40 \text{ eV}-\dot{A}^2$		V-Ų eV-Å
2	n -	5	J												1.00	4.00	-	0.94		原子	量	原子量	. 19	(子量]					原子問行	列要素		
0	0	×	5	A				1	2	3	d(A) =	4	5	6	7	8		9	10	11						V _{0'-} =	$\frac{h^2}{m_{\pi}}$		1	$\eta_{idm} = \eta_{idm}$	$\frac{h^2 r_4^{3/2}}{r_4^{3/2}}$	V.	= n
	Q	\mathcal{O}	0	\sim				В	le 4	B 5		C 6	N 7	0.8	F 9	Ne 10		Na 11	Mg 12	1							$m_m md^2$	1.40			$md^{1/2} = -3.16$		
	0	S	05						8.17	12.54		17.52	23.04	29.14	35.80	43.2		5.13	6.86								$\eta_{1pq} = 1.8$	\$4		1 pda	= -2.95		7
-	\mathcal{O}	U		4				-	4.14	6.64	15	*2.76	11.47	14.13	16.99	20.0	27	0.91	2.99								$\eta_{pp\sigma} = 3.2$	24		η_{pds}	= 1.36		η.
1		AN	De.						0.58	0.44	-	0.37		0.42			4.3	0.96	0.74							$V_1 = (i$	$(\epsilon_p - \epsilon_s)/4$	0.01	1	/2 = 2.16/	$r^{2}/(md^{2})$	V_{2}	$= (\varepsilon_p^c)$
	1		4						9.01	0.16		12.01	14.01	1.46	1.33	20.18		22.99	24.31								3			$r_{2}^{h} = 4.37l$	$n^{2}/(md^{2})$	W	e = 6.8
								M	a 12	AI 13		Si 14	P 15	S 16	CI 17	Ar 18		K 19	Ca 20	Sc 21	1								我	ポテンシ	ャルと遮へ	44	
									6.86	10.11		13.55	17.10	20.80	24.63	42.1		4.19	5.41	5.85							1.		-4nZ	e ² cos ar	4	$4e^2k_Fm$	
									2.99	4.86	10	6.52	8.33	10.27	12.31	14.5	3.40	0.73	1.11		2.0							Wq	$= -\Omega_0(q)$	$r^{2} + \kappa^{2}$)	κ ² = -	πh^2	
								1.2	0.74	0.61	35	0.56	0.51	0.47	0.48		10	1.20	0.90								(k)A	$ d, m\rangle =$	h2k2 (1	4) 3/2 Y 7(($E_{i} = \frac{\hbar^2 k_d^2}{2} \Big($	1 + Sr.
1	D5	D6	70	DS	D٩	D10	D11	-	0.65	0.45		0.38	20.07	1.90	1.81	20.05	4	1.33	0.94	44.96								dan my	$N_{3}^{1/2}m$ (r	01 . 20	A+ YK/	2m \	. πr
-	11.00	0.04	14.05	5.00	0.0	DIO				20.98		28.09	30.97	32.06	33.45	39.95		35.10 DL 27	40.00 C- 20	44.70 V 20										重なり相	互作用		
4	V 23	13.94	Min 25	Fe 20	17 77	18.96	20.14 J	62	8 40	3a 31		3e 32	AS 33	Se 34	Br 35	Kr 36		3.94	5.00	5 53	3					-			$V_{a}(d)$	$= 4c[(\sigma/d)]$	$1^{12} - (\sigma/d)^6$	5	
8	0.98	0.90	0.86	0.80	0.76	0.71	0.67	.83	3.38	4.90		6.36	7.91	9.53	11.20	13.0		2.74	5.00	2.00													
7	1.21	1.22	1.24	1.25	1.24	1.22	1.15	.36	1.59	1.66	2.44	*1.74	0.51	0.50			65. I	0.69	1.02														
0	0.88	0.84	0.80	0.76	0.74	0.72	1.41		5127	U.L.Y		0.24	0.01	0.50	1.95		4.0	1.48	1.10														
0	50.94	52.00	54.94	55.85	58.93	58.71	63.54	6	55.37	69.72		72.59	74.92	78.96	79.91	83.80		85.47	87.62	88.91	F4	<i>F</i> 5	F6	F7	<i>F</i> 8	F9	<i>F</i> 10	<i>F</i> 11	<i>F</i> 12	<i>F</i> 13	<i>F</i> 14	<i>F</i> 15	<i>F</i> 1
0	Nb 41	Mo 42	Tc 43	Ru 44	Rh 45	Pd 46	Ag 47	Co	d 48	In 49	4	Sn 50	Sb 51	Te 52	1 53	Xe 54		Cs 55	Ba 56	La 57	Ce 58	Pr 59	Nd 60	Pm 61	Sm 62	Eu 63	Gd 64	Tb 65	Dy 66	Ho 67	Er 68	Tm 69	Yb
0	1.28	11.36	13.08	14.59	0.99	0.94	0.89	.41	7.70	4.69		5.94	7.24	8.59	9.97	21.8		3.30	4.45	4.80	3	3	3	5	3	2	3	3	3	3	3	3	2
2	1.04	1.04	1.03	1.00	0.95	0.93	0.71	.20	1.41	1.50	2.8	1.63	1825	TRACK!			3.98	0.64	0.98		2.02	2.02	2.01		1.99	2.27	1.99	1.95	1.96	1.95	1.94	1.93	1
1	1.62	1.55	1.50	1.48	1.49	1.52	1.59		0.65	0.63	0	0.59	0.56	0.54	2.16		20.0	1.55	1.29		1.11	0.80	1.08		1.04	0.81	1.02	0.75	0.61		0.72	0.78	0
2	92.91	95.94	(99)	101.1	102.9	106.4	107.9	11	2.4 1	114.8	1	18.7	121.8	127.6	126.9	131.3		132.9	137.3	138.9	140,1	140.9	144.2	(147)	150.4	152.0	157.2	158.9	162.5	164.9	167.3	168.9	173
72	Ta 73	W 74	Re 75	Os 76	lr 77	Pt 78	Au 79	Hg	g 80	TI 81	F	Pb 82	Bi 83	Po 84	At 85	Rn 86		Fr 87	Ra 88	Ac 89	Th 90	Pa 91	U 92	Np 93	Pu 94	Am 95	Cm 96	Bk 97	Cf 98	Es 99	Fm 100	Md 101	No 1
4	9.57	10.96	12.35	13.73	15.13	16.55	17.98	5.48	7.68	9.92		12.07	14.15	16.21	18.24	32.7	1 [3.40	4.24	4.63												10000	
2	1.15	1.16	1.20	1.13	1.08	1.04	0.98		1.36	4.61	-	1.58	6.9 (8.19	9.44	20.8				-	1.99	1.81	1.71	1.66	1.78	2.01							
5	1.62	1.56	1.52	1.49	1.50	1.53	1.59		0.66	0.60		0.57	0.57					1.75	1.37		0.59		0.72	-									
	180.9	183.8	186.0	190.2	192.2	195.0	197.0	20	0.6 2	204.4	2	07.2	209.0	(210)	(210)	(222)		(223)	(226)	(227)	232.0	(231)	238.1	(237)	(244)	(243)	(247)	(247)	(252)	(254)	(257)	(257)	(25
1			20010		a cound						1.4	1 1 1 M	M-17.7.10	(440)	141111	1666		N 60 80 10	1.00000		and and a second	i incel				1		1		11	1	100.1	fee.

遷移金属

共有性固体

 $\vec{\tau} - \infty$ の出典:現街を,及びを,はHerman と Skillman (1973)の表から採った。擬ポテンシャ ルの芯半径ェは、16章で述べた通り既知の擬ポテンシャル (f 数金属ではイオン化エネル ギー)に合わせて決めた。イオン半径r,は、第1行から第4行までの元素では電荷Zが行 の数に等しい化合物、第5行から第1行までの元素ではZは行の数から8を差し引いたち の、遷移金属ではZは2、f 殻金属ではZは3(但しUでまZは4)に等しい化合物についてKittel (1976) が集めた資料から採った。遷移金属の沖合の $r_{a,ks}$, r_{cit} , 20章で述べたように Anderson と Jepsen (1977) から採った、 $n_{i}r_{s}$ の価はすべて(は状態のもの65 かて)エネルギーパンドの計算結果に合うように理論価を補正することによって得たものである。

非

金属 — イオン性固体

f. 殼 金 属

Copyright @ 1979 by W. H. Freen

DFTとTight-bindingのバンド構造: Siの例

1原子だけを単位格子に含む場合

結晶軌道 $\Psi_{\rm CO}(\mathbf{k},\mathbf{r}) = \sum e^{i\mathbf{k}\cdot\mathbf{r}_i}\Psi(\mathbf{r}-\mathbf{r}_i)$

equivalent atoms in all lattice

 $\Psi_{1}(\mathbf{k},\mathbf{r}) = \sum e^{i\mathbf{k}\cdot\mathbf{r}_{i}}\Psi_{1}(\mathbf{r}-\mathbf{r}_{i}) \qquad \Psi_{2}(\mathbf{k},\mathbf{r}) = \sum e^{i\mathbf{k}\cdot\mathbf{r}_{i}}\Psi_{2}(\mathbf{r}-\mathbf{r}_{i})$ 結晶軌道 $\Psi_{CO}(\mathbf{k},\mathbf{r}) = \sum_{all independent atoms} C_{i}\Psi_{i}(\mathbf{k},\mathbf{r})$ $\left| \begin{array}{c} H_{11}(\mathbf{k}) - \varepsilon(\mathbf{k}) & H_{12}(\mathbf{k}) \\ H_{12}(\mathbf{k}) & H_{22}(\mathbf{k}) - \varepsilon(\mathbf{k}) \end{array} \right| = 0$

自由電子近似

自由電子 (空格子) バンド

 $\Psi_k(x) = C \exp[i(k + G_h)] = C \exp[i(k + ha^*)] \qquad h = \cdots, -2, -1, 0, 1, 2, \cdots$

自由電子バンドと実際のSiのバンド構造

P.Y. ユー, M.カルドナ著, 半導体の基礎, Springer (1999日本語訳)

Kronig-Penneyモデル

Shrödinger方程式の境界条件
$$\frac{d^2}{dx^2}\psi(x) = 2(V(x) - E)\psi(x)$$

両辺を
$$x_0 - h$$
から $x_0 + h$ の範囲で積分する
 $\psi'(x_0 + h) - \psi'(x_0 - h) = 2 \int_{x_0 - h}^{x_0 + h} (V(x) - E) \psi(x) dx$
 $= 2h [(V(x_0 + h) - E) \psi(x_0 + h) - (V(x_0 - h) - E) \psi(x_0 - h)]$
 $\sim 2h [V(x_0 + h) - V(x_0 - h)] \psi(x_0)$

最後の変形で、 x_0 で $\Psi(x)$ が連続とした。

さらに、 x_0 で V(x) の変化が 1/h より小さければ、 $h \Rightarrow 0$ で 一次微分は連続 $\Psi'(x+h) = \Psi'(x-h)$

有限の井戸型ポテンシャルではh => 0で $hV_0 => 0$ であるから、 一次微分も x_0 で連続である必要がある。

バンド理論: Kronig-Penneyモデル

井戸一障壁での境界条件: φ, φ'が連続

Blochの定理: $\phi(x+a) = \lambda \phi(x)$ $\lambda = \exp(ika)$

$$\begin{pmatrix} 1 & 1 & -1 & -1 \\ i\alpha & -i\alpha & -\beta & \beta \\ \exp(i\alpha w_w) & \exp(-i\alpha w_w) & -\lambda\exp(-\beta b) & -\lambda\exp(-\beta b) \\ i\alpha\exp(i\alpha w_w) & -i\alpha\exp(-i\alpha w_w) & -\beta\lambda\exp(-\beta b) & \beta\lambda\exp(-\beta b) \end{pmatrix} \begin{pmatrix} A \\ B \\ C \\ D \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

左辺の行列の行列式が0になる必要がある

$$2\cos ka = \left(\frac{\beta^2 - \alpha^2}{\alpha\beta}\sin \alpha w_w \sin \beta b + 2\cos \alpha w_w \cosh \beta b\right)$$

$$bV_0 \, \mathbf{i} - \mathbf{c} \mathbf{O} \, \mathbf{\xi} \, \mathbf{H} \, \mathbf{c} \, \mathbf{b} \Rightarrow \mathbf{0} \, \mathbf{O} \, \mathbf{i} \, \mathbf{U} \, \mathbf{\xi} \, \mathbf{v} \mathbf{\delta} \mathbf{\xi}$$

$$2\cos ka = \left(\frac{\beta^2 - \alpha^2}{\alpha} b \sin \alpha a + 2\cos \alpha a\right) \quad \mathbf{c} \cos ka = \left(\frac{mV_0}{\hbar^2} \frac{b}{\alpha} \sin \alpha a + \cos \alpha a\right)$$

Kronig-Penney方程式の解法

Kronigh-Pennyモデル

水谷宇一郎著、金属電子論、内田老鶴圃 (1995)

転送行列法

平面波近似: 電子は波である Schrödinger方程式

$$\Psi(\mathbf{r}) = A \exp(i\mathbf{k}_i \cdot \mathbf{r}) + B \exp(-i\mathbf{k}_i \cdot \mathbf{r})$$

$$k_i = \sqrt{\frac{2m}{\hbar^2} \left(E - V_i \right)}$$

区間ごとに波数の異なる平面波で接続できる

平面波近似: 転送行列法

H. Mizuta, T. Tanoue, "The Physics and Applications of Resonant Tunnelling Diodes," Cambridge Univ Press (1995)

$$\Psi_i(x) = A_i \exp(ik_i x) + B_i \exp(-ik_i x) \qquad k_i = \sqrt{\frac{2m_i}{\hbar^2}} (E - V_i)$$

境界条件

$$\Psi_{i}(x_{i+1}) = \Psi_{i+1}(x_{i+1}) \qquad m_{i}^{-1}\Psi_{i}'(x_{i+1}) = m_{i+1}^{-1}\Psi_{i+1}'(x_{i+1})$$

$$\begin{pmatrix} A_{i+1} \\ B_{i+1} \end{pmatrix} = \begin{pmatrix} \alpha^{+}{}_{i}P_{i} & \alpha^{-}{}_{i}/Q_{i} \\ \alpha^{-}{}_{i}Q_{i} & \alpha^{+}{}_{i}/P_{i} \end{pmatrix} \begin{pmatrix} A_{i} \\ B_{i} \end{pmatrix}$$

$$\alpha^{\pm}{}_{i} = \frac{1}{2} \left[1 \pm (m_{i+1}/m_{i})(k_{i}/k_{i+1}) \\ P_{i} = \exp[i(k_{i}-k_{i+1})x_{i+1}] \\ Q_{i} = \exp[i(k_{i}+k_{i+1})x_{i+1}] \right]$$
平面波近似: 転送行列法

H. Mizuta, T. Tanoue, "The Physics and Applications of Resonant Tunnelling Diodes," Cambridge Univ Press (1995)

-2

-1

0

Position / nm

1

2

-3

$$\begin{pmatrix} A_{N} \\ B_{N} \end{pmatrix} = \begin{pmatrix} \alpha^{+}_{N-1}P_{N-1} & \alpha^{-}_{N-1}/Q_{N-1} \\ \alpha^{-}_{N-1}Q_{N-1} & \alpha^{+}_{N-1}/P_{N-1} \end{pmatrix} \begin{pmatrix} A_{N-1} \\ B_{N-1} \end{pmatrix} = T_{N-1}T_{N-2} \begin{pmatrix} A_{N-2} \\ B_{N-2} \end{pmatrix} = T \begin{pmatrix} A_{0} \\ B_{0} \end{pmatrix}$$

$$T = T_{N-1}T_{N-2} \cdots T_{0}$$

$$\begin{array}{c} \mathbf{i=0} \\ \mathbf{j=1} \\ \mathbf{j=1} \\ \mathbf{j=0} \\ \mathbf{j=1} \\ \mathbf{j=0} \\ \mathbf{j=0} \\ \mathbf{j=1} \\ \mathbf{j=0} \\ \mathbf{j=0} \\ \mathbf{j=1} \\ \mathbf{$$

1枚の障壁のトンネル

2枚の障壁のトンネル(QW, RTD)

=> 原子 (障壁) が 2つ以上あれば、特定のエネルギーで 100% 透過する

電子と光の散乱

光の透過と反射

$$R = \left(\frac{n_2 - n_1}{n_2 + n_1}\right)^2$$

$$R = \left(\frac{r_1 + r_2 \exp(-i\delta)}{1 + r_1 r_2 \exp(-i\delta)}\right)^2$$

$$\delta = 4\pi n_1 d$$

$$T = 1$$

多重量子井戸 (MQW) の透過: バンド

平面波法 I: Roothan-Hall方程式から

平面波法

-次結合の基底関数として平面波を使う $\phi_{\mathbf{k}}(\mathbf{r}) = \exp(i\mathbf{k}\cdot\mathbf{r})\sum_{kl}C_{hkl}u_{hkl}(\mathbf{r}) = u_{hkl}(\mathbf{r}) = \exp[i\mathbf{G}_{\mathbf{hkl}}\cdot\mathbf{r}]$

波数 G_{hkl}の平面波は格子周期の関数の完全基底系: すべての hkl について和を取れば、完全に正しい解になる => **実際の計算では** |G_{hkl}| < G_{max}の範囲で近似する

=> GPUで高速化が容易

$$\begin{vmatrix} H_{11} - ES_{11} & H_{12} - ES_{12} & \cdots & H_{1n} - ES_{1n} \\ H_{21} - ES_{21} & H_{22} - ES_{ss} & H_{2n} - ES_{2n} \\ \vdots & \ddots & \vdots \\ H_{n1} - ES_{n1} & H_{n2} - ES_{n2} & \cdots & H_{nn} - ES_{nn} \end{vmatrix} = 0$$

$$\langle u_{h'k'l'} | H | u_{hkl} \rangle = \int e^{-i(\mathbf{k} + \mathbf{G}_{\mathbf{h'k'l'}})\mathbf{r}} \left[-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}) \right] e^{i(\mathbf{k} + \mathbf{G}_{\mathbf{hkl}})\cdot\mathbf{r}} d\mathbf{r}$$

$$= \delta_{hkl,h'k',l'} \frac{\hbar^2}{2m} (\mathbf{k} + \mathbf{G}_{\mathbf{hkl}})^2 + \frac{V^*(\mathbf{G}_{\mathbf{hkl}} - \mathbf{G}_{\mathbf{h'k'l'}})}{\mathbf{g}} (\mathbf{k} + \mathbf{G}_{\mathbf{hkl}})^2 + V^*(\mathbf{G}_{\mathbf{hkl}} - \mathbf{G}_{\mathbf{h'k'l'}})$$
実際の計算のほとんどがポテンシャルのフーリエ変換

平面波基底

Fourier変換 周期 *a* の関数は必ず、波数 $k_l = \frac{2\pi}{a}l$ の平面波の和で表される 1次元: $f(x) = \sum_{l=-\infty}^{\infty} A_l \exp\left(i\frac{2\pi}{a}lx\right)$ 3次元: $f(\mathbf{r}) = \sum_{h,k,l=-\infty}^{\infty} A_{h,k,l} \exp\left(i\mathbf{G}_{hkl}\cdot\mathbf{r}\right)$

・無限個の平面波基底を使えれば、 どのような関数も正確に表現できる

・計算時間、メモリーの制限から、有限個の平面波だけを使う

$$E_{cut} = \frac{\hbar^2}{2m_e} k_{cut}^{2} = \frac{\hbar^2}{2m_e} |\mathbf{G}_{hkl,cut}|^2$$

cut-offエネルギーが基底の精度を決める (WIEN2kの場合: *Rk*_{max}=Min(*R*_{MT})**k*_{cut})

Na原子の3s動径関数 (DV-Xα法で計算)

ほとんど自由な電子近似 (NFE) 1次元で考える: $\phi_k(x) = \exp(ikx)\sum C_h \exp\left[i\frac{2\pi}{a}hx\right]$

平面波法のうち、一番大きいフーリエ成分のみを使う

$$\langle u_0 | H | u_0 \rangle = \frac{\hbar^2}{2m} k^2$$

 $\langle u_1 | H | u_1 \rangle = \frac{\hbar^2}{2m} \left(k + \frac{2\pi}{a} \right)^2 = \frac{\hbar^2}{2m} (k+G)^2$

 $\langle u_1 | H | u_0 \rangle = V^*_1$

$$\begin{vmatrix} \left(\hbar^2 / 2m \right) k^2 - E & V^*_1 \\ V^*_1 & \left(\hbar^2 / 2m \right) (k+G)^2 - E \end{vmatrix} = 0$$

注: 本来は u_1 も入れないといけないが、
以下では BZ境界だけの議論をするので、
ここでは無視する

k = -G / 2 (BZ境界) のときに エネルギー分裂は最大になる

$$E_{\pm} = \frac{\hbar^2}{2m} \left(\frac{\pi}{a}\right)^2 \pm V^*$$

平面波の干渉により バンドギャップが開く

花村榮一、固体物理学(裳華房)

必要な平面波を減らすエ夫

直交化平面波法 (OPW: Orthogonalized Plane Wave Method)
 原子の内殻波動関数を使い、内殻軌道に直交する平面波を使う

「擬ポテンシャル法 (PP: Pseudo Potential Method)
 原子核の静電ポテンシャルが内殻電子によって平滑化される効果を
 「擬ポテンシャル」として扱うことにより、空間的変動の小さい有効ポテンシャルと
 価電子軌道を取り扱う

CASTEP, VASP, PWscf

・補強された平面波法

(L/APW: Linearlized/Augumented Plane Wave Method) 原子の波動関数でよく表される領域(Muffin-Tin(MT)球)と、表せない領域に 分け、価電子軌道をMT球内の原子基底で補強された平面波で表す

WIEN2k

・原子基底の一次結合法

(LCAO: Linear Combination of Atomic Orbitals) 平面波を使わず、原子の波動関数を使う

CRYSTAL, Gaussian, Atomistic Toolkit (VNL), DV-Xα

平面波法 II: 一電子Schrödinger方程式から

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r})\right)\phi_{kl}(\mathbf{r}) = E\phi_{kl}(\mathbf{r})$$

Blochの定理

$$\phi_{kl}(\mathbf{r}) = \exp(i\mathbf{k} \cdot \mathbf{r}) u_k(\mathbf{r}) \quad \text{結晶格子の周期関数}$$
$$= \exp(i\mathbf{k} \cdot \mathbf{r}) \sum_j c_{kj} u_{kj}(\mathbf{r} - \mathbf{r}_j) \quad \text{結晶格子の周期基底関数}$$

$$\sum_{j} \left(\frac{1}{2m} \left(-i\hbar \nabla + \hbar \mathbf{k} \right)^2 + V(\mathbf{r}) \right) c_{\mathbf{k}j} u_{\mathbf{k}j}(\mathbf{r}) = E \sum_{j} c_{\mathbf{k}j} u_{\mathbf{k}j}(\mathbf{r})$$

バンド計算の方程式: 平面波基底 -電子Schrödinger方程式

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r})\right)\phi_{kl}(\mathbf{r}) = E\phi_{kl}(\mathbf{r})$$

Blochの定理

$$\phi_{\mathbf{k}l}(\mathbf{r}) = \exp(i\mathbf{k}\cdot\mathbf{r})u_{\mathbf{k}}(\mathbf{r})$$

逆格子の波数を持つ平面波の重ね合わせ: 結晶格子の周期性 $u_{\mathbf{k}}(\mathbf{r}) = \sum_{G_{i}} c_{G_{i}} \exp(i\mathbf{G}_{i} \cdot \mathbf{r})$ $\phi_{\mathbf{k}l}(\mathbf{r}) = \sum_{G_{i}}^{i} c_{\mathbf{k}+G_{i}} \exp(i[\mathbf{k}+\mathbf{G}_{i}]\cdot\mathbf{r})$

$$\sum_{\mathbf{G}_{i}} \left(\frac{\hbar}{2m} (\mathbf{k} + \mathbf{G}_{i})^{2} + V(\mathbf{r}) \right) c_{\mathbf{k} + \mathbf{G}_{i}} e^{i(\mathbf{k} + \mathbf{G}_{i}) \cdot \mathbf{r}} = E \sum_{\mathbf{G}_{i}} c_{\mathbf{k} + \mathbf{G}_{i}} e^{i(\mathbf{k} + \mathbf{G}_{i}) \cdot \mathbf{r}}$$

バンド計算の方程式:平面波基底

平面波基底: 2基底

$$\begin{aligned} G_{-1,0,1} &= -\frac{2\pi}{a}, 0 & u_i(x) = e^{i(k-G)x}, e^{ikx} \\ V_{G_j,G_i} &= \int e^{i(G_i - G_j)x} V(x) dx \\ \sum_{G_i} \left(\frac{\hbar^2}{2m} (k + G_i)^2 \delta_{G_i,G_{i'} - G_j} + V_{G_i,G_j} - E \right) c_{k+G_i} = 0 \\ \left| \frac{\hbar^2}{2m} \left(k - \frac{2\pi}{a} \right)^2 + V_0 - E & V_1 \\ & V_{-1} & \frac{\hbar^2}{2m} k^2 + V_0 - E \right| = 0 \end{aligned}$$

平面波基底: 2基底, Γ点

$$G_{-1,0,1} = -\frac{2\pi}{a}, 0 \qquad u_i(x) = e^{i(k-G)x}, e^{ikx}$$

$$V_{G_j,G_i} = \int e^{i(G_i - G_j)x} V(x) dx$$

$$\sum_{G_i} \left(\frac{\hbar^2}{2m} (k + G_i)^2 \delta_{G_i,G_i,-G_j} + V_{G_i,G_j} - E\right) c_{k+G_i} = 0$$

$$\left|\frac{\hbar^2}{2m} \left(\frac{2\pi}{a}\right)^2 + V_0 - E \quad V_1 \\ V_{-1} \quad V_0 - E\right| = 0$$

$$\left(\frac{\hbar^2}{2m} \left(\frac{2\pi}{a}\right)^2 + V_0 - E\right) (V_0 - E) - |V_1|^2 = \mathbf{0}$$

$$E^2 - \left(\frac{\hbar^2}{2m} \left(\frac{2\pi}{a}\right)^2 + 2V_0\right) E + \left(\frac{\hbar^2}{2m} \left(\frac{2\pi}{a}\right)^2 + V_0\right) V_0 - |V_1|^2 = \mathbf{0}$$

$$x2 + bx + c = 0$$

$$(x + b/2)^2 - b^2/4 + c = 0$$

$$x = [-b \pm \sqrt{(b^2 - 4c))}]/2$$

$$E = \frac{\left(\frac{\hbar^2}{2m} \left(\frac{2\pi}{a}\right)^2 + 2V_0\right) \pm \sqrt{\left(\frac{\hbar^2}{2m} \left(\frac{2\pi}{a}\right)^2 + 2V_0\right)^2 - 4\left(\left(\frac{\hbar^2}{2m} \left(\frac{2\pi}{a}\right)^2 + V_0\right) V_0 - |V_1|^2\right)}}$$

$$\frac{(2m(a))^{-1}}{2}$$

平面波基底: 2基底, X点

$$G_{-1,0,1} = -\frac{2\pi}{a}, 0 \qquad u_i(x) = e^{i(k-G)x}, e^{ikx}$$

$$k = \frac{\pi}{a}$$

$$V_{G_j,G_i} = \int e^{i(G_i - G_j)x} V(x) dx$$

$$\sum_{G_i} \left(\frac{\hbar^2}{2m} (k + G_i)^2 \delta_{G_i,G_{i'} - G_j} + V_{G_i,G_j} - E\right) c_{k+G_i} = 0$$

$$\left| \frac{\hbar^2}{2m} \left(\frac{\pi}{a}\right)^2 + V_0 - E \qquad V_1 \\ V_{-1} \qquad \frac{\hbar^2}{2m} \left(\frac{\pi}{a}\right)^2 + V_0 - E \right| = 0$$

$$E_{\pm} = \frac{\hbar^2}{2m} \left(\frac{\pi}{a}\right)^2 + V_0 \pm |V_1|$$

平面波基底:3基底

 $G_{-1,0,1} = -\frac{2\pi}{a}, 0, \frac{2\pi}{a}$ $u_i(x) = e^{i(k-G)x}$, e^{ikx} , $e^{i(k+G)x}$ $V_{G_i,G_i} = \int e^{i(G_i - G_j)x} V(x) dx$ $\sum_{G_i} \left(\frac{\hbar^2}{2m} (k + G_i)^2 \delta_{G_i, G_i, -G_i} + V_{G_i, G_i} - E \right) c_{k+G_i} = 0$ $\begin{vmatrix} \frac{\hbar^2}{2m} \left(k - \frac{2\pi}{a} \right)^2 + V_0 - E & V_1 & 0 \\ V_{-1} & \frac{\hbar^2}{2m} k^2 + V_0 - E & V_{-1} \\ 0 & V_1 & \frac{\hbar^2}{2m} \left(k + \frac{2\pi}{a} \right)^2 + V_0 - E \end{vmatrix} = 0$

平面波基底:3基底,Γ点

$$\begin{aligned} G_{-1,0,1} &= -\frac{2\pi}{a}, 0, \frac{2\pi}{a} & u_i(x) = e^{i(k-G)x}, e^{ikx}, e^{i(k+G)x} \\ k = \theta \\ V_{G_j,G_i} &= \int e^{i(G_i - G_j)x} V(x) dx \\ \sum_{G_i} \left(\frac{\hbar^2}{2m} (k + G_i)^2 \delta_{G_i,G_{i'} - G_j} + V_{G_i,G_j} - E\right) c_{k+G_i} = 0 \\ & \left| \frac{\hbar^2}{2m} \left(\frac{2\pi}{a}\right)^2 + V_0 - E & V_1 & 0 \\ & V_{-1} & V_0 - E & V_{-1} \\ & 0 & V_1 & \frac{\hbar^2}{2m} \left(\frac{2\pi}{a}\right)^2 + V_0 - E \right| = 0 \end{aligned}$$

Fourier変換

Fourier変換

いくつかの定義がある

Fourier変換
$$F(\omega) = \int_{-\infty}^{\infty} f(t) \exp(i\omega t) dt$$
Fourier逆変換 $f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) \exp(-i\omega t) d\omega$

Fourier変換
$$F(\omega) = \int_{-\infty}^{\infty} f(t) \exp(i2\pi ft) dt$$

Fourier逆変換 $f(t) = \int_{-\infty}^{\infty} F(\omega) \exp(-i2\pi ft) d\omega$

Fourier変換の特徴

- ・時系列データを周波数データに変換
- ・空間系列データを波数(波長)データに変換
- ・元データの原点はFTデータの全空間に拡張される
- ・元の全空間データはFTデータの原点に還元される

幅 W のGauss 関数のFourier変換は、幅 W⁻¹ のGauss 関数 Fourier変換したデータをFourier逆変換すると元のデータに戻る

Fourier級数展開

$$x(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} \left(a_n \cos \frac{2\pi n}{T} t + b_n \sin \frac{2\pi n}{T} t \right)$$
$$a_n = \frac{2}{T} \int_0^T x(t) \cos \frac{2\pi n}{T} t dt$$
$$b_n = \frac{2}{T} \int_0^T x(t) \sin \frac{2\pi n}{T} t dt$$

$$\begin{aligned} x(t) &= \sum_{n=-\infty}^{\infty} c_n \exp\left(i\frac{2\pi n}{T}t\right) \\ c_n &= \frac{1}{T} \int_0^T x(t) \exp\left(-i\frac{2\pi n}{T}t\right) dt \\ &= \frac{1}{T} \int_0^T x(t) \exp\left(-i\frac{2\pi n}{T}t\right) dt \end{aligned}$$

離散フーリエ変換 (DFT)

x(t)は [0, T^w]以外では 0 とし、 $x(0) = x(T^w)$ を仮定する

$$X(f) = T_{s}^{w} \sum_{j=0}^{N-1} x(t_{j}) \exp(-i2\pi f j T^{w} / N) \qquad T_{s}^{w} = T^{w} / N$$

通常、係数を含まない式を離散フーリエ変換として使う $y(f_k) = \sum_{j=0}^{N-1} x(t_j) \exp(-i2\pi kj/N)$ $f_k = k/T^w$

三角関数の計算を毎回せずに離散Fourier変換できる $y_k = \sum_{j=0}^{N-1} x_j w_N^{kj}$ $w_N = \exp(-i2\pi/N)$:回転因子

$$w_{N}^{k+1} = (\cos(-2\pi k / N) + i \sin(-2\pi k / N))(\cos(-2\pi / N) + i \sin(-2\pi / N))$$

= $(\cos(-2\pi k / N)w_{N,r} - \sin(-2\pi k / N)w_{N,i})$
+ $i(\cos(-2\pi k / N)w_{N,i} + \sin(-2\pi k / N)w_{N,r})$
= $(w_{N,r}^{k}w_{N,r} - w_{N,i}^{k}w_{N,i}) + i(w_{N,r}^{k}w_{N,i} + w_{N,i}^{k}w_{N,r})$

離散フーリエ変換: 行列表現

離散Fourier変換

逆離散Fourier変換

 $w_N^{k} = w_N^{k \mod N}, w_N^{k+N/2} = -w_N^{k}$ なので、 $k = 1 \sim N/2$ までの 計算だけすればよい

金谷健一,これならわかる応用数学教室,共立出版社(2003)

データ数は N = 2^m でなければいけない DFT (計算量 N²)と同じ計算だが、Nlog N の計算量ですむ 簡単なハード回路で実装でき、多並列化が容易 (GPU)

離散Fourier変換は、 $w_N^k = z$ と置き換えると、 x_i を係数とする多項式になる

$$y_{k} = \sum_{j=0}^{N-1} x_{j} w_{N}^{kj} = \sum_{j=0}^{N-1} x_{j} z^{j}$$

$$y_{k} = x_{0}z^{0} + x_{1}z^{1} + x_{2}z^{2} + \dots + x_{N-1}z^{N-1}$$
$$= x_{0}z^{0} + x_{2}z^{2} + \dots + x_{N-2}z^{N-2}$$
$$+ z(x_{1}z^{0} + x_{2}z^{2} + \dots + x_{N-1}z^{N-2})$$

と変形すると、最後の式は、 項の数が $\frac{1}{2}$ で $z_2 = z^2$ に関する多項式であることがわかる

$$y_{k} = \sum_{j=0}^{N/2-1} x_{2j} z_{2}^{j} + z \sum_{j=0}^{N/2-1} x_{2j+1} z_{2}^{j}$$

Fourier変換の例

my (\$f1, \$p1, \$A1) = (1.5, \$pi/4.0, 1.0); my (\$f2, \$p2, \$A2) = (3.0, \$pi/3.0, 0.3); my (\$f3, \$p3, \$A3) = (10.0, \$pi/6.0, 0.5); x += rand(0.03); # ノイズを入れるmy y = \$A1 * sin(2.0*\$pi * \$f1 * \$x + \$p1)+ \$A2 * sin(2.0*\$pi * \$f2 * \$x + \$p2)+ \$A3 * sin(2.0*\$pi * \$f3 * \$x + \$p3);

Convolution: w = 0.03のGauss関数

数値解法

バンド理論: Kronig-Penneyモデル

井戸一障壁での境界条件: φ, φ'が連続

Blochの定理: $\phi(x+a) = \lambda \phi(x)$ $\lambda = \exp(ika)$

$$\begin{pmatrix} 1 & 1 & -1 & -1 \\ i\alpha & -i\alpha & -\beta & \beta \\ \exp(i\alpha w_w) & \exp(-i\alpha w_w) & -\lambda\exp(-\beta b) & -\lambda\exp(-\beta b) \\ i\alpha\exp(i\alpha w_w) & -i\alpha\exp(-i\alpha w_w) & -\beta\lambda\exp(-\beta b) & \beta\lambda\exp(-\beta b) \end{pmatrix} \begin{pmatrix} A \\ B \\ C \\ D \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

左辺の行列の行列式が0になる必要がある

$$2\cos ka = \left(\frac{\beta^2 - \alpha^2}{\alpha\beta}\sin \alpha w_w \sin \beta b + 2\cos \alpha w_w \cosh \beta b\right)$$

$$bV_0 \, \mathbf{i} - \mathbf{c} \mathbf{O} \, \mathbf{\xi} \, \mathbf{H} \, \mathbf{c} \, \mathbf{b} \Rightarrow \mathbf{0} \, \mathbf{O} \, \mathbf{i} \, \mathbf{U} \, \mathbf{\xi} \, \mathbf{v} \mathbf{\delta} \mathbf{\xi}$$

$$2\cos ka = \left(\frac{\beta^2 - \alpha^2}{\alpha} b \sin \alpha a + 2\cos \alpha a\right) \quad \mathbf{c} \cos ka = \left(\frac{mV_0}{\hbar^2} \frac{b}{\alpha} \sin \alpha a + \cos \alpha a\right)$$

Kronig-Penney方程式の解法

E

常微分方程式の境界値問題: ノイメロフ積分 菅野暁 監修,足立裕彦、塚田 著,スレーター分子軌道計算,第3章 東京大学出版会 (1982) 原子のSchrödinger方程式の動径関数 (Rydberg単位) $-\frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{dR(r)}{dr}\right) + \left[-\varepsilon + V(r) + \frac{l(l+1)}{r^2}\right]R(r) = 0 \qquad \lim_{r \to 0,\infty} R(r) = 0$ P(r) = rR(r) $\frac{d^2}{dr^2}P(r) = g(r)P(r)$ $g(r) = -\varepsilon + V(r) + \frac{l(l+1)}{r^2} = -\varepsilon - 2\frac{Z}{r} + \frac{l(l+1)}{r^2}$ $P_{n+1} - 2P_n + P_{n-1} = h^2 P''_n + O(h^4) = h^2 g_n P_n + O(h^4)$ 中央の式までは Verlet法 $P_{n+1} = (2 + h^2 g_n) P_n - P_{n-1}$

ノイメロフ (Noumerov) 積分:

$$y_{n} = P_{n} - \frac{h^{2} P''_{n}}{12} = P_{n} \left(1 - \frac{h^{2} g_{n}}{12} \right)$$
として次の式を使うと、さらに精度が上がる
$$y_{n+1} = \left(2 + \frac{h^{2} g_{n}}{1 - h^{2} g_{n} / 12} \right) y_{n} - y_{n-1} + O(h^{6})$$

常微分方程式の境界値問題: 波動関数

P(r) = rR(r)
菅野暁 監修, 足立裕彦、塚田 著, スレーター分子軌道計算,第3章 東京大学出版会 (1982)

$$P_{n+1} = (2 + h^2 g_n) P_n - P_{n-1} \qquad g_n = -E - 2\frac{Z}{r_n} + \frac{l(l+1)}{r_n^2}$$

初期条件: $P_0 = 0, P_1 = \alpha$

E を変えて境界条件 lim <math>P(r) = 0 を満たすようにする $r \rightarrow 0,\infty$

常微分方程式の境界値問題: 波動関数

P(r) = rR(r) 菅野暁 監修, 足立裕彦、塚田 著, スレーター分子軌道計算,第3章 東京大学出版会 (1982)

$$P_{n+1} = (2 + h^2 g_n) P_n - P_{n-1} \qquad g_n = -E - 2 \frac{Z}{r_n} + \frac{l(l+1)}{r_n^2}$$

$$\overline{N}$$

$$\overline{N}$$

$$\overline{N}$$

$$\overline{R}$$

$$P_0 = 0, P_1 = \alpha$$

$$\overline{I}$$

$$\overline{R}$$

$$\overline{R}$$

$$F_1 = 0$$

$$r \to 0, \infty$$

動径関数の境界値

菅野暁 監修, スレーター分子軌道計算, 第3章, 東京大学出版会 (1982)
 藤原毅夫著、固体電子構造論、内田老鶴圃 (2015)
 P_{n+1} = (2+h²g_n)P_n - P_{n-1}
 g_n = -E-2 $\frac{Z}{r_n} + \frac{l(l+1)}{r_n^2}$ 境界条件1 (r ~ 0):
 R_l(r) ∝ r^l +…
 P_l(r) ∝ r^{l+1} +…
 境界条件2 (r → ∞):
 R_l(r) ∝ exp(- $\sqrt{-Er}$)
 P_l(r) ∝ r exp(- $\sqrt{-Er}$)
 (原子単位)

- (1) $P_l^{in}(\mathbf{r}) \mathbf{\epsilon} \mathbf{r} = \mathbf{0}$ からr が増加する方向に $\mathbf{r} = \mathbf{r}_c$ まで積分
- (2) $P_l^{\text{out}}(\mathbf{r})$ を大きな $r = r_{\text{out}}$ からrが減少する方向に $r = r_c$ まで積分
- (3) 係数を調整して、 $P_l^{in}(r_c) = P_l^{out}(r_c)$ とする
- (4) $dP_l^{in}(r_c) / dr = dP_l^{out}(r_c) / dr$ となるように E を調整する
- (5) $\varepsilon = | dP_l^{in}(r_c) / dr dP_l^{out}(r_c) / dr | がある微少数以下になったら$ 解が得られたとする

動径関数の境界値問題の解法

菅野暁 監修, スレーター分子軌道計算, 第3章, 東京大学出版会 (1982)

藤原毅夫著、固体電子構造論、内田老鶴圃 (2015)

 $\Delta P'(r_c) = 0$ になる E をNewton法で求める

Z = 5, n = 1, l = 0, E = -6.24983 eV (精確値: -Z²/n² = -6.25)

ノイメロフ積分: 規格化

菅野暁 監修, 足立裕彦、塚田 著, スレーター分子軌道計算,付録A 東京大学出版会 (1982)

異なる原子で同じrメッシュが使えるように規格化

$$r = \mu x = \left(9\pi^2 / 128Z\right)^{1/3} x$$

 $U(x) = \frac{\mu x}{2Z} V(x): U(x) \mathrel{id} x = 0 \mathrel{o} 1,$ 無限大で 0 (異なる原子でほぼ同一になる (Thomas-Fermi模型)) Thomas-Fermi模型の解を初期値に使う

以上のような座標点を用いて式 (A-13) を計算するのであるが、それには ポテンシャ ル V(r) の初期値を与えなければならない. まず最初の計算の V(r) の初期値 $V^{ot}(r)$ としてトーマス・フェルミの方程式

$$\frac{d^2\phi(x)}{dx^2} = [\phi(x)]^{3/2} x^{-1/2}$$
(A-18)

を境界条件 $\phi(0)=1$, $\phi(\infty)=0$ で求める. そして $V^{0i}(r)$ は

$$rV^{0l}(r) = -2Z\phi(x) \tag{A-19}$$

の関係から得られる.また固有値の初期値 E% としてはやはりトーマス・フェルミ模型 によるエネルギー準位を採用する(計算は繰り返し行なってセルフコンシステントにな るようにするので,これらの初期値の選択はそれほど重要ではない).

常微分方程式の境界値問題: Thomas-Fermiモデル 後藤憲一他,詳解現代物理学演習、共立出版(1972)

φ(r): 遮蔽された原子核ポテンシャル

$$\phi(r) \rightarrow \frac{1}{4\pi\varepsilon_0} \frac{Ze}{r} \quad (r \rightarrow 0)$$

$$0 \qquad (r \rightarrow \infty)$$

規格化

- 2

$$\chi(r) = \frac{4\pi\varepsilon_0}{Ze} r \varphi(r) = \frac{4\pi\varepsilon_0}{Ze} r (E_F / e + \phi(r)) \qquad b = Z^{-1/3} \left(\frac{3\pi}{4}\right)^{2/3}$$
$$r = by = 0.8853 Z^{-1/3} a_0 y \qquad a_0 = \frac{4\pi\varepsilon_0 \hbar^2}{me^2}$$

 $\frac{a_0}{2}$

= 0.52921 Å

電子密度による近似 (Thomas-Fermiモデル)

$$y^{1/2} \frac{d^2 \chi}{dy^2} = \chi^{3/2} \qquad \chi(y) \to 1 \quad (y \to 0)$$
$$0 \quad (E_F = 0, y \to \infty)$$
$$\int \rho(r) dv = Ze \qquad \rho(r) = \varepsilon_0 \nabla^2 \phi(r)$$

漸化式が与えられている

境界条件 (y ~ 0): Maclaurin展開^[1]

$$y(x) = 1 + Bx + \frac{4}{3}x\sqrt{x} + \frac{2}{5}Bx^{\frac{5}{2}} + \frac{1}{3}x^3 + \dots$$

 $y'(x) = B + 2\sqrt{x} + Bx^{\frac{3}{2}} + x^2 + \frac{3}{20}Bx^{\frac{5}{2}} + \dots$
 $B = y'(0) \sim -1.588076779$

境界条件
$$(y \to \infty)^{[2]}$$
: $\chi(y) \cong 144/y^3$
より遠方で ^[3] $y(x) \simeq \frac{1}{\left[1 + \left(\frac{x}{x_0}\right)^{\frac{3}{\lambda}}\right]^{\lambda}}, y'(x) \simeq -\frac{\frac{3}{x_0}\left(\frac{x}{x_0}\right)^{\frac{3}{\lambda}-1}}{\left[1 + \left(\frac{x}{x_0}\right)^{\frac{3}{\lambda}}\right]^{\lambda+1}}$
 $\lambda = 3.886, x_0 = 5.2415$

[1] M.A. Noor, S.T. Mohyud-Din. Homotopy, Perturbation method for solving Thomas-Fermi equation using Pade approximation, Int. J. Nonlinear Sci. 8 (2009) 27
[2] R.G. パール, W. ヤング "原子・分子の密度汎関数法", シュプリンガー・フェアラーク東京 (1996)
[3] M. Desaix, D. Anderson, and M. Lisak, *Eur. J. Phys.* 25(2004) 699.

r = 0 から前進解 $\chi^{f}(y)$ を求めると、r が大きくなると発散する 大きい $r = r_{e}$ から内側に r = 0 まで $\chi^{r}(y)$ を解くほうがよい

次の漸近解 $(y \rightarrow \infty)^{[1]}$ を使うと、かなり良い結果が得られる

最初から解く場合:大きい $r = r_e \circ \chi(r_e) \geq \chi'(r_e)$ を与える必要

ここでは荒い漸近解^[1]を使ってみる $\chi(y) \cong B / y^3 \quad B = 144$ [1] R.G. パール, W. ヤング "原子·分子 の密度汎関数法", シュプリンガー・フェ アラーク東京 (1996)

実際にB = 144からr = 0に向かって計算すると、 $\chi(0)$ が非常に大きくなる => 例えばB = (10, 150)を初期値にし、 $\chi(0) = 1.0$ になるように二分法で解く

常微分方程式の境界値問題の解き方

典型的な場合:二階微分方程式では f_0, f_0 が必要

境界条件を満足するためのパラメータが含まれる

Thomas-Fermi方程式:

初期条件は χ(0) = 1。 χ'(0) を与える必要がある。

 $\chi'(0)$ を境界条件 $\chi(r) \rightarrow 0 (r \rightarrow \infty)$ を 満たすように調節する。

Schrödinger方程式の動径分布関数 R(r):

初期条件はR(0) = 0。

斉次方程式では、R(r)の係数は任意のため、 R'(0)は適当に選んで構わない。

固有値 Eを境界条件 $R(r) \rightarrow 0$ $(r \rightarrow \infty)$ を満たすように調節する。

有限区間の境界値問題: 有限要素法など