Planet simulator: Solve simulataneous second order diffrential equations

Download script from .\diffeq2nd_planet.py


import sys
import csv
import numpy as np
from math import exp, sqrt, sin, cos, pi
import matplotlib.pyplot as plt


"""
  Planet simulator: Solve simulataneous second order diffrential equations
"""



#===================
# constants
#===================
G = 6.67259e-11 #Nm2/kg2
DayToSecond = 60 * 60 * 24 #s
SecondToDay = 1.0 / DayToSecond
AstronomicalUnit = 1.49597870e11 #m
AU = AstronomicalUnit
G1 = G * DayToSecond * DayToSecond / AU / AU / AU

#===================
# parameters
#===================
# algorism to solve differential equations: 'Euler', 'Verlet'
solver = 'Euler'
#solver = 'Verlet'
fplot = 1 # flag to plot graph: 0: not plot, 1: plot

# planet parameter database
dbfile = 'planet_db.csv'
# trajectries of planets
outfile = "diffeq2nd_Planet_{}.csv".format(solver)
# conservation law of total energy (U) and momenta (Px, Py, Pz)
outfile2 = "diffeq2nd_Planet_{}_conservation.csv".format(solver)

# step time to solve diff eq
dt = 0.1
# maximum steps to be calculated
nt = 20000

# display output control
iprint_interval = 100
nprint_planets = 4

# graph output control
iplotdata_interval = 50
iplot_interval = 500
# graph range
xgrange = (-5.0, 5.0)
ygrange = (-5.0, 5.0)

argv = sys.argv
n = len(argv)
if n >= 2:
    solver = argv[1]
if n >= 3:
    dt = float(argv[2])
if n >= 4:
    nt = int(argv[3])
if n >= 5:
    fplot = int(argv[4])


#===================
# functions
#===================
def readdb(dbfile):
    planets = []
    f = open(dbfile, "r");
    reader = csv.DictReader(f)
    for row in reader:
       planets.append(row)
    keys = list(planets[0].keys())
    for d in planets:
        for key in keys:
            if key != 'Name':
                d[key] = float(d[key])
    return planets

def sum(array):
    sum = 0.0
    for e in array:
        sum += e
    return sum

def Ptot(it, M, vx, vy, vz):
    Px, Py, Pz = 0.0, 0.0, 0.0
    Pmsm = 0.0
    np = len(M)
    for i in range(0, np):
        Pxi = M[i] * vx[i][it];
        Pyi = M[i] * vy[i][it];
        Pzi = M[i] * vz[i][it];
        Px += Pxi
        Py += Pyi
        Pz += Pzi
        Pmsm += Pxi*Pxi + Pyi*Pyi + Pzi*Pzi
    Pmsm = sqrt(Pmsm / 3.0 / np)
    return Px, Py, Pz, Pmsm

# Normalize total momentum to zero
def normalize_momentum(it, M, x, y, z, vx, vy, vz, fx, fy, fz):
    Mtot = sum(M)
    Px, Py, Pz, Pmsm = Ptot(it, M, vx, vy, vz);
    print("Pinitial = {}, {}, {}".format(Px, Py, Pz))
    for ip in range(0, len(M)):
        vx[ip][it] -= Px / Mtot;
        vy[ip][it] -= Py / Mtot;
        vz[ip][it] -= Pz / Mtot;
    Px, Py, Pz, Pmsm = Ptot(it, M, vx, vy, vz);
    print("Pnormalized = {}, {}, {}".format(Px, Py, Pz))
    print("")
    return Px, Py, Pz

# set initial normalized positions, velocities, forces
def initialize(planets, M, x, y, z, vx, vy, vz, fx, fy, fz):
    global AU
    global DayToSecond

    for i in range(0, len(planets)):
        M.append(planets[i]['Mass'])
        x.append([planets[i]['Revolution Radius'] / AU])
        y.append([0.0])
        z.append([0.0])
        vx.append([0.0])
        vy.append([planets[i]['Revolution Velocity'] * DayToSecond / AU])
        vz.append([0.0])

    for i in range(0, len(planets)):
        fxi, fyi, fzi = Fi(0, i, M, x, y, z)
        fx.append([fxi])
        fy.append([fyi])
        fz.append([fzi])

# total energy
def Utot(istep, M, x, y, z, vx, vy, vz):
    U = 0.0
    K = 0.0
    for i in range(0, len(M)):
        K += 0.5 * M[i] \
          * (vx[i][istep]*vx[i][istep] + vy[i][istep]*vy[i][istep] + vz[i][istep]*vz[i][istep])
        for j in range(i+1, len(M)):
            dx = x[j][istep] - x[i][istep]
            dy = y[j][istep] - y[i][istep]
            dz = z[j][istep] - z[i][istep]
            r2 = dx*dx + dy*dy + dz*dz
            r = sqrt(r2)
            U += G1 * M[i] * M[j] / r
    return U, K, U + K

# i - j interplanet normalized force devided by i-th planets mass
def Fij(istep, i, j, M, x, y, z):
    dx = x[j][istep] - x[i][istep]
    dy = y[j][istep] - y[i][istep]
    dz = z[j][istep] - z[i][istep]
    r2 = dx*dx + dy*dy + dz*dz
    r = sqrt(r2)
    g = G1 * M[j]
    f = g / r2
    fx = f * dx / r
    fy = f * dy / r
    fz = f * dz / r
    return fx, fy, fz

# normalized force on i-th planet devided by its mass
def Fi(istep, i, M, x, y, z):
    fxi = 0.0
    fyi = 0.0
    fzi = 0.0
    for j in range(0, len(M)):
        if i == j:
            continue
        fxj, fyj, fzj = Fij(istep, i, j, M, x, y, z)
        fxi += fxj
        fyi += fyj
        fzi += fzj
#    print("f={}, {}, {}".format(fxi, fyi, fzi))
    return fxi, fyi, fzi

#===================
# main routine
#===================
def main():
    global plt
    global nt
    global dt

    print("Planet simulator: Solve simulataneous second order diffrential equations by Euler method")
    print("G = {} Nm2/kg2".format(G))
    print("AU = {:e} m".format(AU))
    print("G1 = {}".format(G1))
    print("")

# read planet database
    print("Planets:")
    planets = readdb(dbfile)
    keys = list(planets[0].keys())
    for d in planets:
        print(" ", d['Name'])
        for key in keys:
            if key != 'Name':
                print(" {}: {}".format(key, d[key]))
    print("")

# create list variables and normalize
    M = []
    x = []
    y = []
    z = []
    xg = []
    yg = []
    zg = []
    vx = []
    vy = []
    vz = []
    fx = []
    fy = []
    fz = []
    initialize(planets, M, x, y, z, vx, vy, vz, fx, fy, fz)
    Px, Py, Pz = normalize_momentum(0, M, x, y, z, vx, vy, vz, fx, fy, fz)
    print("")

# make label list for display / csv output
    labellist = ['t']
    for i in range(0, len(planets)):
        labellist.append("x({})".format(planets[i]['Name']))
        labellist.append("y({})".format(planets[i]['Name']))

# open outfile to write a csv files
    print("Write to [{}]".format(outfile))
    f = open(outfile, 'w')
    fout = csv.writer(f, lineterminator='\n')
    fout.writerow(labellist)

    f2 = open(outfile2, 'w')
    fout2 = csv.writer(f2, lineterminator='\n')
    fout2.writerow(['t', 'U', 'K', 'E', 'Px', 'Py', 'Pz', 'Pmsm'])

    print("{:^5}".format('t'), end = '')
    for i in range(1, nprint_planets*2, 2):
        print(" {:^12} {:^12}".format(labellist[i], labellist[i+1]), end = '')
    print("")

# create figure object and axes list
    if fplot == 1:
        fig, ax = plt.subplots(1, 1)
        plots = []

# Solve the 1st data by Euler or Heun method
    datalist = [0.0]
    print("{:^5}".format(0.0), end = '')
    for i in range(0, len(planets)):
        fx0, fy0, fz0 = Fi(0, i, M, x, y, z)
        vx1 = vx[i][0] + dt * fx0
        vy1 = vy[i][0] + dt * fy0
        vz1 = vz[i][0] + dt * fz0
        x1 = x[i][0] + dt * vx[i][0]
        y1 = y[i][0] + dt * vy[i][0]
        z1 = z[i][0] + dt * vz[i][0]

        datalist.append(x[i][0])
        datalist.append(y[i][0])
        x[i].append(x1)
        y[i].append(y1)
        z[i].append(z1)
        vx[i].append(vx1)
        vy[i].append(vy1)
        vz[i].append(vz1)
        if fplot == 1:
            xg.append([x1])
            yg.append([y1])
            zg.append([z1])
            lines, = ax.plot(x[i], y[i], linewidth = 0.3)
            plots.append(lines)
    for i in range(1, nprint_planets*2, 2):
        print(" {:>12.4f} {:>12.4f}".format(x[i][0], y[i][0]), end = '')
    print("")
    fout.writerow(datalist)
    U, K, E = Utot(0, M, x, y, z, vx, vy, vz)
    Px, Py, Pz, Pmsm = Ptot(0, M, vx, vy, vz)
    fout2.writerow([0.0, U, K, E, Px, Py, Pz, Pmsm])

# Solve the 2nd and later steps
    for it in range(1, nt+1):
        t = it * dt
#        print("it={} t={}".format(it, t))
        datalist = [t]
        if it % iprint_interval == 0:
            print("{:^5}".format(t), end = '')
        xmin = 0.0
        xmax = 0.0
        ymin = 0.0
        ymax = 0.0
        for i in range(0, len(planets)):
            fx0, fy0, fz0 = Fi(it, i, M, x, y, z)
            if solver == 'Euler':
                vx1 = vx[i][it] + dt * fx0
                vy1 = vy[i][it] + dt * fy0
                vz1 = vz[i][it] + dt * fz0
                x1 = x[i][it] + dt * vx[i][it]
                y1 = y[i][it] + dt * vy[i][it]
                z1 = z[i][it] + dt * vz[i][it]
            elif solver == 'Verlet':
                x1 = 2.0 * x[i][it] - x[i][it-1] + dt*dt * fx0
                y1 = 2.0 * y[i][it] - y[i][it-1] + dt*dt * fy0
                z1 = 2.0 * z[i][it] - z[i][it-1] + dt*dt * fz0
                vx1 = (x1 - x[i][it-1]) / 2.0 / dt
                vy1 = (y1 - y[i][it-1]) / 2.0 / dt
                vz1 = (z1 - z[i][it-1]) / 2.0 / dt

            datalist.append(x[i][it])
            datalist.append(y[i][it])
            x[i].append(x1)
            y[i].append(y1)
            z[i].append(z1)
            vx[i].append(vx1)
            vy[i].append(vy1)
            vz[i].append(vz1)
            if fplot and (it % iplotdata_interval == 0):
                xg[i].append(x1)
                yg[i].append(y1)
                zg[i].append(z1)
# add trajectry data (x[i], y[i]) to the axes object plaots[i]
# get x- and y-ranges to be displayed in the graph
            if fplot and i <= 6:
                plots[i].set_data(xg[i], yg[i])
                xmin = min([xmin] + x[i])
                xmax = max([xmax] + x[i])
                ymin = min([ymin] + y[i])
                ymax = max([ymax] + y[i])
# display output every iprint_interval steps
        if it % iprint_interval == 0:
            for i in range(1, nprint_planets*2, 2):
                print(" {:>12.4g} {:>12.4g}".format(x[i][it], y[i][it]), end = '')
            print("")
# write to trajectory csv file
        fout.writerow(datalist)
# write to conservation csv file
        U, K, E = Utot(it, M, x, y, z, vx, vy, vz)
        Px, Py, Pz, Pmsm = Ptot(it, M, vx, vy, vz)
        fout2.writerow([t, U, K, E, Px, Py, Pz, Pmsm])
# update the graph every iplot_interval steps
        if fplot and it % iplot_interval == 0:
            ax.set_xlim(xgrange)
            ax.set_ylim(ygrange)
#            ax.set_xlim((xmin, xmax))
#            ax.set_ylim((ymin, ymax))
            plt.pause(0.1)

    f.close()

    print("Press ENTER to exit>>", end = '')
    input()

    exit()


if __name__ == '__main__':
    main()