No title
Download script from .\equation-newton-raphson.py
import csv
import numpy as np
from numpy import sin, cos, tan, pi, exp
import matplotlib.pyplot as plt
import time
import sys
# self-consistent parameters
x0 = 0.0
dump = 0.0
eps = 1.0e-10
nmaxiter = 200
iprintiterval = 1
# graph plot parameters
ngdata = 51
xgmin = -1.0
xgmax = 2.0
tsleep = 1.0
argv = sys.argv
n = len(argv)
if n >= 2:
x0 = float(argv[1])
if n >= 3:
dump = float(argv[2])
if n >= 4:
tsleep = float(argv[3])
# first derivative of func(x)
def diff(x):
return exp(x) - 3.0
def func(x):
return exp(x) - 3.0 * x
def main():
global plt, ngdata, xgmin, xgmax
global x0, dump, eps, nmaxiter, iprintinterval
print("")
print("Solution of transcendental equation by Newton-Raphson method")
print("")
print("x0 =", x0)
print("dumping factor =", dump)
print("")
xg = []
yg = []
yz = [0.0] * ngdata
xgstep = (xgmax - xgmin) / (ngdata - 1)
for i in range(ngdata):
xg.append(xgmin + i * xgstep)
yg.append(func(xg[i]))
fig, ax = plt.subplots(1, 1)
plt.title("Solve equation")
plt.xlabel("x")
plt.ylabel("f(x)")
ax.set_xlim([xgmin, xgmax])
ax.set_ylim([min(yg), max(yg)])
data, = ax.plot(xg, yg, color = 'black', linewidth = 0.3)
yzero, = ax.plot(xg, yz, color = 'red', linewidth = 0.3)
solve, = ax.plot([], color = 'blue', marker = 'o', linestyle = '')
plt.pause(0.1)
# time.sleep(3.0)
x = x0
xt = []
yt = []
for i in range(nmaxiter):
f = func(x)
f1 = diff(x)
f1 *= (1.0 + dump)
xnext = x - f / f1
dx = xnext - x
if i % iprintiterval == 0:
print("Iter {:5d}: x: {:>16.12f} => {:>16.12f}, dx = {:>10.4g}".format(i, x, xnext, dx))
if abs(dx) < eps:
print(" Success: Convergence reached: dx = {} < eps = {}".format(dx, eps))
break
xt.append(x)
yt.append(f)
solve.set_data(xt, yt)
plt.pause(1.0e-5)
time.sleep(tsleep)
x = xnext
else:
print(" Failed: Convergence did not reach: dx = {} > eps = {}".format(dx, eps))
return 0
print("Press enter to terminate:", end = '')
ret = input()
print("")
if __name__ == "__main__":
main()