Note: Standard python has only 64bit double precision for floating point type.
Numerical python module (numpy) can handle different precisions for ndarray type
np.float16 # half precision (半精度 浮動小数点数)
np.float32 # single precision (単精度 浮動小数点数)
np.float64 # double precision (倍精度 浮動小数点数)
np.float128 # quadruple (double-double) precision (四倍精度 浮動小数点数)
# numpy for Anaconda ver 3.7 may not support np.float128

Download script from .\sum_error.py


import sys
import csv
import numpy as np

"""
  Note: Standard python has only 64bit double precision for floating point type.
        Numerical python module (numpy) can handle different precisions for ndarray type
    np.float16 # half precision (半精度 浮動小数点数)
    np.float32 # single precision (単精度 浮動小数点数)
    np.float64 # double precision (倍精度 浮動小数点数)
    np.float128 # quadruple (double-double) precision (四倍精度 浮動小数点数)
                # numpy for Anaconda ver 3.7 may not support np.float128
"""



#===================
# parameters
#===================
outfile = 'sum_error.csv'
h = 0.01
n = 101
iprintstep = 10


def getintarg(iarg, defval = None):
    try:
        return int(argv[iarg])
    except:
        return defval

def getfloatarg(iarg, defval = None):
    try:
        return float(argv[iarg])
    except:
        return defval


argv = sys.argv
narg = len(argv)
if narg <= 2:
    print("")
    print("Usage: python sum_error.py h n iPrintStep")
    print(" Summing up h for n times with different precision interger types.")
    print(" Output every iPrintStep steps")
    print("")
    exit()
else:
    h = getfloatarg(1, h)
    n = getintarg(2, n)
    iprintstep = getintarg(3, iprintstep)

#==========================================================
# define precision types as the first elements of ndarrays
# all the variables will be refered to e.g. as h16[0], sum16[0] ...
#==========================================================
h16 = np.array([h], dtype=np.float16)
sum16 = np.array([0.0], dtype=np.float16)
h32 = np.array([h], dtype=np.float32)
sum32 = np.array([0.0], dtype=np.float32)
h64 = np.array([h], dtype=np.float64)
sum64 = np.array([0.0], dtype=np.float64)
#h128 = np.array([h], dtype=np.float128)
#sum128 = np.array([0.0], dtype=np.float128)

# error variables should have the highest precision
ex = np.array([0.0], dtype=np.float64)
err16 = np.array([0.0], dtype=np.float64)
err32 = np.array([0.0], dtype=np.float64)
err64 = np.array([0.0], dtype=np.float64)

#===================
# main routine
#===================
print("")
print("Summing up {} for {} times with "
      "different precision floating point types".format(h, n))
print("Write to [{}]".format(outfile))

# open outfile to write a csv file
f = open(outfile, 'w')
fout = csv.writer(f, lineterminator='\n')
fout.writerow(['exact', 'float16', 'float32', 'float64',
               'error(float16)', 'error(float32)', 'error(float64'])

print("")
print("{:^3}:\t{:^28}\t{:^28}\t{:^28}".format('exact', 'sum16 (error)', 'sum32 (error)', 'sum64 (error)'))

for i in range(n): # repeat n times from i = 0 to n-1
    ex[0] = (i+1) * h
    sum16[0] += h16[0]
    err16[0] = ex[0] - sum16[0]
    sum32[0] += h32[0]
    err32[0] = ex[0] - sum32[0]
    sum64[0] += h64[0]
    err64[0] = ex[0] - sum64[0]
#    sum128 += h128
#    err128 = ex - sum128[0]

    fout.writerow([ex[0], sum16[0], sum32[0], sum64[0], err16[0], err32[0], err64[0]])
    if(i % iprintstep == 0):
        print("{:<0.4f}: ".format(ex[0]), end = '')
        print("{:<0.18f} ({:<+9.2e}) ".format(sum16[0], err16[0]), end = '')
        print("{:<0.18f} ({:<+9.2e}) ".format(sum32[0], err32[0]), end = '')
        print("{:<0.18f} ({:<+9.2e}) ".format(sum64[0], err64[0]), end = '')
        print("")

f.close()

print("")