Introduction to Solid State Science

Toshio Kamiya

İ	Class 9 Jan. 11	Kamiya Toshio	Review of fundamental physics of dielectrics and ferroelectrics: Part 1	Understand fundamental physics of dielectrics and ferroelectrics
	Class 10	Kamiya Toshio	Review of fundamental physics of dielectrics: Part 2	Understand calculations of dielectric and ferroelectric properties
ļ	Jan. 15	1051110	dielectrics and refloelectrics. Fait 2	remoeneeurie properties

What are material properties / functions?

Hadis Morkoc and Umit Ozgur, Zinc Oxide, Wiley-VCH

Electromagnetism equations

Maxwell equation

Gauss law

Ampere-Maxwell law Non-existence of magnetic monopole Electromagnetic induction law

$$\operatorname{rot} \mathbf{H}(\mathbf{r}, t) = \mathbf{i}_{e}(\mathbf{r}, t) + \frac{\partial \mathbf{D}(\mathbf{r}, t)}{\partial t}$$
$$\operatorname{div} \mathbf{B}(\mathbf{r}, t) = 0$$

div $\mathbf{E}(\mathbf{r},t) = \frac{1}{2} \rho_e(\mathbf{r},t)$

$$\operatorname{rot} \mathbf{E}(\mathbf{r}, t) + \frac{\partial \mathbf{B}(\mathbf{r}, t)}{\partial t} = 0$$

Derivatives

Electric field and electrostatic potential Poisson equation

$$\mathbf{E}(\mathbf{r},t) = \frac{\partial \phi(\mathbf{r},t)}{\partial \mathbf{r}}$$

$$\nabla^2 \phi(\mathbf{r},t) = -\frac{1}{\varepsilon_0} \rho_e(\mathbf{r},t)$$

$$\mathbf{w} \quad \mathbf{div} \, \mathbf{i}_e(\mathbf{r},t) + \frac{\partial \rho_e(\mathbf{r},t)}{\partial t} = 0$$

Charge conservation law

Electromagnetism equations

Constitutive equations (material equations)

- **Ohm's law** (Electrical conductivity) $\mathbf{j}_{e}(\mathbf{r},t) = \sigma \mathbf{E}(\mathbf{r},t)$
- **Electric susceptibility**

$$\mathbf{P}_{\mathbf{e}}(\mathbf{r},t) = \chi_{e} \mathbf{E}(\mathbf{r},t)$$

Dielectric permittivity (Dielectric constant)

$$\mathbf{D}_{\mathbf{e}}(\mathbf{r},t) = \varepsilon \mathbf{E}(\mathbf{r},t)$$

Relative dielectric permittivity (constant) $\mathcal{E}_r = \frac{\mathcal{E}}{\mathcal{E}_0}$

Magnetic susceptibility $\mathbf{M}(\mathbf{r},t) = \chi_M \mathbf{H}(\mathbf{r},t)$ Magnetic permeability $\mathbf{B}(\mathbf{r},t) = \mu \mathbf{H}(\mathbf{r},t)$

What is dielectrics?

Electrical conductor (semiconductor, metal)

Characterized by electrical conductivity σ $\mathbf{j}_{e}(\mathbf{r},t) = \sigma \mathbf{E}(\mathbf{r},t)$ (typically > 10⁻⁸ S/cm)

Insulator

Characterized by very small electrical conductivity σ
(typically << 10⁻⁸ S/cm)and by dielectric constant ϵ $D_e(\mathbf{r},t) = \varepsilon \mathbf{E}(\mathbf{r},t)$

Dielectrics

Good dielectrics (usually)

- are good electrical insulator (very small σ) to minimize dielectric loss and leakage current
- have high ε

to storage large charges at low applied voltage Classified to

paraelectics (dielectrics), ferroelectrics, anti-ferroelectrics

Application of dielectrics: Capacitor Capacitor: Storage charges by applied voltage V

$$\frac{V_{C}}{V_{C}} + \frac{V_{C}}{V_{C}} + \frac{V_{C}}{V_{C}} = |P| = CV_{C} = \varepsilon_{r}\varepsilon_{0}\frac{S}{d}V_{C}$$

$$----- -Q_{\rm C}$$

TZ

 ε_r : Relative dielectric constant

- S : Electrode area of the capacitor
- *d* : Electrode distance

Circuits: Low (High) pass filter Oscillator *Combined with resistor, inductor*

Application of dielectrics: DRAM DRAM (dynamic random access memory)

Application of dielectrics: FET FET (Field-effect transistor)

Two representative functions of transistor

Electric polarization

Definition of electric polarization *p*

Two point charges +q and -q are located at r_+ and r_- , respectively.

$$-q \stackrel{r_{+}}{\longrightarrow} +q$$

$$-q \stackrel{r_{-}}{\longrightarrow} \delta r = r_{+} - r_{-}$$

$$p = +qr_{+} + (-q)r_{-} = q\delta r$$

$$E \stackrel{L}{\longrightarrow} \Delta U_{p-E} = -qr_{+} \cdot E - (-q)r_{-} \cdot E$$

$$= -p \cdot E$$

General definition of electric polarization density, P

N point charges with q_i are located at r_i , respectively, in the volume V.

$$P = \frac{1}{V} \sum_{i=1}^{N} q_i r_i$$

Note: Uniquely defined only when the charge neutrality is satisfied.

Dielectric constant

Definition of electric flux density D

 $\mathbf{D}_{\mathbf{e}}(\mathbf{r},t) = \varepsilon_0 \mathbf{E}(\mathbf{r},t) + \mathbf{P}(\mathbf{r},t)$

Electric susceptibility $P_e(\mathbf{r},t) = \chi_e \mathbf{E}(\mathbf{r},t)$

 $\mathbf{D}_{\mathbf{e}}(\mathbf{r},t) = \left(\varepsilon_0 + \chi_e\right) \mathbf{E}(\mathbf{r},t) = \varepsilon \mathbf{E}(\mathbf{r},t)$

ε : Dielectric constant (permittivity)

 $\varepsilon_r = \frac{\varepsilon}{\varepsilon_0}$: Relative dielectric constant

 ε_r of representative crystals

CaO	11.8	MgO	9.8
SrO	13.3	KBr	4.78
KC1	4.68	KF	6.05
KI	4.94	LiI	11.03
LiCl	11.05	NaCl	5.62
TiO_2 (r	utile)		// <i>c</i> : 173, in <i>a-b</i> : 89
SnO_2 (1	rutile)		// <i>c</i> : 9.9, in <i>a</i> - <i>b</i> : 14
$Pb(Zr_0)$	$_{52}\text{Ti}_{0.48}\text{O}_{3}$ (25°C)		up to 1600

Representative dielectric crystals ε_r of representative crystals

CaO	11.8	MgO	9.8
SrO	13.3	KBr	4.78
KC1	4.68	KF	6.05
KI	4.94	LiI	11.03
LiCl	11.05	NaCl	5.62
TiO_2 (r	utile)		// <i>c</i> : 173, in <i>a-b</i> : 89
SnO_2 (r	utile)		//c: 9.9, in <i>a</i> - <i>b</i> : 14
$Pb(Zr_{0.2})$	₅₂ Ti _{0.48})O ₃ (25°C)		up to 1600

General trend (there should be many exceptions)

Rock-salt structure (usually $\varepsilon_r < 10$)

Rutile structure TiO₂ have large $\varepsilon_{r//c} \sim 180$

Perovskite structure Many extraordinary high $\varepsilon_r > 10^3$ (anti-)ferroelectrics, piezoelectrics

Simple model: 1D ionic crystal at 0 K

Ion polarization

Polarization formed by ion displacement induced by external electric field E.

Calculation of ion replacement

Internal energy without *E*:

$$U_{0} = \sum U_{ij}(r_{ij}) = \sum \frac{1}{2}k(x_{i} - x_{i-1} - l_{0})^{2}$$

*x*_i: Coordinate of *i*-th ion *k*: Force constant (spring constant)

If ions are displaced by E, internal energy will be:

$$U = \sum \frac{1}{2} k \{ (x_i - x_{i-1} - l_0) \}^2 - \sum q_i x_i E$$

Mechanical equilibrium condition at 0K

$$\frac{\partial U}{\partial x_j} = 0 = k \left(x_j - x_{j-1} - l_0 \right) - k \left(x_{j+1} - x_j - l_0 \right) - q_j E = 2k \delta x_j - q_j E$$
$$\implies \delta x_j = \frac{q_j}{2k} E$$

Simple model: 1D ionic crystal at 0 K Ion displacement $\delta x_j = \frac{q_j}{2k}E =>$ Polarization density P

$$P = \frac{\sum q_j \delta x_j}{2l_0} = \frac{q^2}{4l_0 k} E$$

Dielectric constant

$$D = \varepsilon E = \varepsilon_0 E + P$$

$$\varepsilon = \varepsilon_0 + \frac{q^2}{4l_0 k} \qquad \left(\varepsilon_r = 1 + \frac{q^2}{4l_0 k \varepsilon_0}\right)$$

Dielectric constant is determined by *k k*: Force constant, or Curvature of ion potential $k = \frac{1}{2} \frac{\partial^2 U}{\partial x_i^2}$

Dielectric constant vs potential curvatureGentle potentialSharp potential

Why perovskite-type crystals exhibit high ε?

Structural instability by the sub-lattice structure Case 1: Unit cell is stabilized by B-O A ion is loosely embedded Case 2: Unit cell is stabilized by A-O

B ion is loosely embedded

For ideal cubic perovskite structure:

Each ion makes just contact with neighbor ions if their ion radii satisfy

$$a = \sqrt{2} \left(r_A + r_O \right) = 2 \left(r_B + r_O \right)$$

 $t = \frac{r_A + r_O}{\sqrt{2}(r_B + r_O)} = 1.0$ Tolerance factor

For *t* apart from 1.0, the cubic structure would be distorted:

t	Lattice	Explanation	Example
>1	Hexagonal	Large $r_{\rm A}$ Small $r_{\rm B}$	BaNiO ₃
0.9-1	Cubic	Ideal contact	SrTiO ₃ , BaTiO ₃
0.71 - 0.9	Orthorhombic Rhombohedral	Small r_A in B ion interstitial	GdFeO ₃ (Orth.) CaTiO ₃ (Orth.)
<0.71	Different structures	Samll $r_{\rm A}, r_{\rm B}$	FeTiO ₃ (Tri.

How to incorporate electronic polarization: Shell model

+Ze: Effective core charge of ion
-Ye: Charge of valence electron contribute to polarization (electron cloud)
(Z-Y)e: Ion charge

 $\pmb{\alpha}_{ion}$

- 1. Ion is separated to 'effective core' and 'electron cloud', which are bound by spring with the force constant k.
- 2. The core and the electron cloud have their own charges, +Ze and -Ye, respectively.

=> The electron cloud can be treated as if it is a rigid ion. The previous 1D model@0K is applied.

Electronic polarization of an ion:

Extension to 3D model @ 0 K, non-harmonic interionic potential

Internal energy without *E*:

$$U_{0} = \frac{1}{2} \sum_{i,j} U_{ij} (\mathbf{r}_{10}, \mathbf{r}_{20}, ...)$$

 r_{i0} : Equilibrium coordinate of <u>i</u>-th ion $U_{ij}(r_k)$: Interionic potential between *i*-th and *j*-th ions

If ions are displaced by E, internal energy will be:

$$U_{pE} = U_{0}(\mathbf{r}_{10} + \delta \mathbf{r}_{1},...) - \sum_{i} q_{i} \delta \mathbf{r}_{i} \cdot \mathbf{E}$$

$$= U_{0} + \frac{1}{2} \sum_{i,s,j,s'} \frac{\partial^{2} U_{0}}{\partial x_{i,s} \partial x_{j,s'}} \delta x_{i,s} \delta x_{j,s'} - \sum_{i} q_{i} \delta \mathbf{r}_{i} \cdot \mathbf{E}$$

$$= U_{0} + \frac{1}{2} \sum_{i,s,j,s'} W_{i,s,j,s'} \delta x_{i,s} \delta x_{j,s'} - \sum_{i} q_{i} \delta \mathbf{r}_{i} \cdot \mathbf{E}$$

$$\delta \mathbf{r}_{i}: \text{ Ion displacement by } \mathbf{E}$$

$$\delta x_{i,s}: s \text{ direction component } (s = x, y, z) \text{ of}$$

$$i - th \text{ ion replacement}$$

$$W_{i,s,j,s'} = \frac{\partial^{2} U_{0}}{\partial x_{i,s} \partial x_{j,s'}}: \text{ Hessian matrix (potential curvature)}$$

Extension to 3D model @ 0 K, non-harmonic interionic potential

$$U_{pE} = U_0 + \frac{1}{2} \sum_{i,s,j,s'} W_{i,s,j,s'} \delta x_{i,s} \delta x_{j,s'} - \sum_i q_i \delta \mathbf{r}_i \cdot \mathbf{E}$$

Mechanical equilibrium condition at 0K

$$\frac{\partial U_{pE}}{\partial x_{i,s}} = 0 = \sum_{j,s'} W_{i,s,j,s'} \delta x_{j,s'} - q_j E_s = 0$$

Ion displacements are calculated easily by the matrix calculation:

$$\left(\delta x_{j,s'}\right) = \left(W^{-1}_{i,s,j,s'}\right)\left(q_j E_s\right)$$
 (cf. 1D case: $\delta x_j = \frac{q_j}{2k}E$)

Dielectric constant tensor ε_{ss} ,

$$\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P} = \varepsilon_0 \mathbf{E} + \frac{1}{V} \sum_j q_j \delta \mathbf{r}_j$$

= $\varepsilon_0 \mathbf{E} + \frac{1}{V} \sum_j q_j \sum_{i,s'} (W^{-1}_{i,s',j,s}) (q_i E_{s'})$
$$\mathcal{D}_s = \sum_{s'} \varepsilon_{ss'} E_{s'} = \sum_{s'} \left(\varepsilon_0 \delta_{ss'} + \frac{1}{V} \sum_{i,j,s'} q_j q_i W^{-1}_{i,s',j,s} \right) E_{s'}$$

Lattice dynamics simulation: GULP - General Utility Lattice Program

http://gulp.curtin.edu.au/gulp/

Curtin Home > Science and Engineering > GULP > GULP > Overview of GULP

Overview of GULP capabilities

- · System types
 - · clusters (0-D)
 - · defects (0-D)
 - · polymers (1-D)
 - · line defects (1-D)
 - surfaces (2-D)
 - slabs (2-D)
 - grain boundaries (2-D)
 - bulk materials (3-D)
- · Energy minimisation
 - · constant pressure / volume
 - · shell only relaxations (optical)
 - · breathing only relaxations

- · Crystal properties
 - · elastic constants
 - bulk moduli
 - · Young's modulus
 - · Poisson's ratios
 - shear moduli
 - · static dielectric constants
 - · high frequency dielectric constants
 - · refractive indices
 - · piezoelectric constants
 - · phonon frequencies
 - · non-analytic correction for gamma point modes
 - · phonon densities of states
 - · projected phonon densities of states
 - · phonon dispersion curves
 - · Patterson symmetry used in k space
 - · zero point vibrational energies
 - · entropy (constant volume)
 - · heat capacity (constant volume)
 - · Helmholtz free energy
 - electrostatic potential
 - electric field
 - · electric field gradients
 - · Born effective charges
 - · frequency dependent dielectric constant tensor
 - reflectivity
 - · mean kinetic energy of phonons

Polarization of polar molecules at finite *T*

Polar molecule like HF: H and F are charged with +q|e| and -q|e|, respectively, and form electrical dipole $p_0 = qd$ (*d* is the chemical bond vector).

When *E* is applied along the *z* direction and p_0 is declined from the z axis by θ degree as shown in Fig. 1: $U_p = -p_0 \cdot E = -p_0 E \cos\theta$ (5.28)Fig. 1 Dipole in electric field *E* Polarization density **P**: $P = \frac{N}{V} \frac{\int p_0 \cos\theta \cdot \exp(\beta p_0 E \cos\theta) \sin\theta d\theta d\varphi}{\int \exp(\beta p_0 E \cos\theta) \sin\theta d\theta d\varphi}$ Replace by $\beta p_0 E = \alpha$ and $\cos \theta = x$, and integrate w.r.t. φ : $P = \frac{N}{V} p_0 \frac{\int x \exp(\alpha x) dx}{\int \exp(\alpha x) dx}$ **Fig. 2 Polar coordinates** Partial integration gives $\int x \exp(\alpha x) dx = \frac{\exp(\alpha x)}{\alpha^2} (\alpha x - 1)$: $P = \frac{N}{V} p_0 L(\alpha)$ (5.49) $L(\alpha) = \coth(\alpha) - \frac{1}{\alpha}$ **Langevin function**

Polarization of polar molecules at finite *T* Electrical susceptibility χ : $P = \chi E = \frac{N}{V} p_0 L(\beta p_0 E)$

$$L(\alpha) = \coth(\alpha) - \frac{1}{\alpha} \quad \text{Langevin function}$$

$$\coth(\alpha) = \frac{e^{\alpha} + e^{-\alpha}}{e^{\alpha} - e^{-\alpha}}$$

$$L(\alpha) \sim \frac{\alpha}{3} - \frac{\alpha^3}{45} + \cdots \quad (\alpha = \beta p_0 E \ll 1)$$

$$L(\alpha) \sim 1 \quad (\alpha = \beta p_0 E \gg 1)$$

Low T / High E: asymptotic to $P \sim \frac{N}{V} p_0$ High T / Low E: $\chi \sim \frac{N/V}{3k_BT} p_0^2$

Dielectric constant *ɛ*:

=>

$$\varepsilon E = \varepsilon_0 E + P$$
$$\varepsilon = \varepsilon_0 + \frac{N/V}{3k_B T} p_0^2$$

Internal macroscopic field is different from external field: Depolarization field

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 457

Figure 4 The depolarization field E_1 is opposite to P. The fictitious surface charges are indicated: the field of these charges is E_1 within the ellipsoid.

External field E_0

Surface charges are induced from internal polarization $\sigma = n_{surface} \cdot P = \pm |P| = \chi E_0$ forms extra electric field: $E_1 = -\frac{P}{\epsilon_0}$

Internal macroscopic field in the dielectrics: $E = E_0 + E_1 = E_0 - \frac{P}{\epsilon_0}$

General shapes of dielectrics: $E_{1,s} = -N_s P_s$, N_s : Depolarization factors (s = x, y, z)

Shape	Axis	(CGS)	N (SI)
Sphere	any	$4\pi/3$	1/3
Thin slab	normal	4π	1
Thin slab	in plane	0	0
Long circular cylinder	longitudinal	0	0
Long circular cylinder	transverse	2π	1/2

Internal macroscopic field is different from external field: Depolarization field

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 459

 χ is defined by internal electric field $E = E_0 + E_1 = E_0 - \frac{N}{\varepsilon_0}P$: $P = \varepsilon_0 \chi E = \varepsilon_0 \chi \left(E_0 - \frac{N}{\varepsilon_0}P\right)$

$$\Rightarrow P = \frac{\varepsilon_0 \chi}{1 + N \chi} E_0$$

Internal electric field at an atomic site: Lorentz field

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 460

 E_0

R1: Assume continuous media with ε (no charge distribution in R1). Contribution to E_{local} is calculated from q_{P} . The deformation field in a sphere is

$$E_2 = \frac{1}{3\varepsilon_0} P$$
: Lorentz field

R2: Contribution to E_{local} at the center of the sphere is calculated by summing up the ion charges in R2.

For cubic symmetry $E_{\text{local}} = E + \frac{1}{3\varepsilon_0}P$

Polarizability of an atom α

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 463

Polarizability of the atom $i(\alpha_i)$ is defined by the atomic polarization p_i and the local electric field

 $E_{\text{local}} = E + \frac{1}{3\varepsilon_0}P$ $p_i = \alpha_i E_{\text{local}}(r_i)$

Assume the atomic polarization is independent from each other. $P = \sum_{i} N_{i} \alpha_{i} E_{\text{local}}(r_{i})$

$$= \sum_{i} N_{i} \alpha_{i} \left(E + \frac{1}{3\varepsilon_{0}} P \right)$$
$$\varepsilon_{0} \chi = \frac{P}{E} = \frac{\sum_{i} N_{i} \alpha_{i}}{1 - \frac{1}{3\varepsilon_{0}} \sum_{i} N_{i} \alpha_{i}}$$

Using $\varepsilon_r = 1 + \chi$ $\frac{\varepsilon^{-1}}{\varepsilon_r + 2} = \frac{1}{3\varepsilon_0} \sum_i N_i \alpha_i$ Clausius-Mossotti relation

Simple model of electronic polarizability

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 464

	The second second		He	Li^+	Be ²⁺	B ³⁺	C^{4+}
Pauling JS			0.201	0.029 0.029	0.008	0.003	0.0013
Pauling JS-(TKS)	O^{2-} 3.88 (2.4)	F ⁻ 1.04 0.858	Ne 0.390	Na ⁺ 0.179 0.290	Mg^{2+} 0.094	Al^{3+} 0.052	Si ⁴⁺ 0.0165
Pauling [S-(TKS)	${ m S}^{2-}\ 10.2\ (5.5)$	${ m Cl}^-$ 3.66 2.947	Ar 1.62	${ m K}^+ \ 0.83 \ 1.133$	${ m Ca}^{2+} \ 0.47 \ (1.1)$	Se ³⁺ 0.286	${ m Ti}^{4+}\ 0.185\ (0.19)$
Pauling JS-(TKS)	${ m Se}^{2-}$ 10.5 (7.)	Br ⁻ 4.77 4.091	Kr 2.46	${ m Rb}^+ \ 1.40 \ 1.679$	${ m Sr}^{2+}$ 0.86 (1.6)	Y^{3+} 0.55	Zr^{4+} 0.37
Pauling JS-(TKS)	${ m Te}^{2-}$ 14.0 (9.)	I ⁻ 7.10 6.116	Xe 3.99	Cs ⁺ 2.42 2.743	${ m Ba}^{2+}\ 1.55\ (2.5)$	La^{3+} 1.04	Ce^{4+} 0.73

Table 1 Electronic polarizabilities of atoms and ions, in 10⁻²⁴ cm³

Values from L. Pauling, Proc. R. Soc. London A114, 181 (1927); S. S. Jaswal and T. P. Sharma, J. Phys. Chem. Solids 34, 509 (1973); and J. Tessman, A. Kahn, and W. Shockley, Phys. Rev. 92, 890 (1953). The TKS polarizabilities are at the frequency of the D lines of sodium. The values are in CGS; to convert to SI, multiply by 9×10^{-15} .

Electronic polarizability

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 464

Total polarizability may be separated into (i) electronic, (ii) ionic, and (iii) dipolar / interfacial parts.

Figure 8 Frequency dependence of the several contributions to the polarizability.

Frequency dependence: Lorentz model

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 466

Shell model: Electron bound by spring constant *k*

Classical mechanics approximation

$$-eE_{\text{local}} = kx = m\omega_0^2 x$$

Electronic polarizability

$$\alpha = \frac{p}{E_{\text{local}}} = -ex/E_{\text{local}} = e^2/m\omega_0^2$$

Frequency dependence: $E_{\text{local}} = E_0 e^{i\omega t}$

$$\alpha = \frac{e^2/m}{\omega_0^2 - \omega^2}$$

The same expression is obtained by quantum theory

$$\alpha = \frac{e^2}{m} \sum_{i,j} \frac{f_{ij}}{\omega_{ij}^2 - \omega^2}$$

 ω_{ij} : Transition energy from *I* to *j* states f_{ij} : Oscillator strength

Generalized to ion displacement polarization

 $-\frac{E_{\text{local}}}{e}$ nuclei $-\frac{\chi}{e}$ electron $k = m\omega_0^2$

Lorentz model and Drude model

Lorentz model is derived from $-eE_{local} = kx = m\omega_0^2 x$: **The recovery force** kx results in the resonant-type relaxation with the relaxation frequency ω_0 .

> $\alpha = \frac{e^2/m}{\omega_0^2 - \omega^2}$: Applied to electronic polarization in atom, ionic polarization (phonon)

For the case of no recovery form, but charge distribution also forms recovery force => Non-resonant-type relaxation: Drude model

$$\varepsilon_{1,Drude}(\omega) = 1 - \frac{\omega_p^2 \tau^2}{1 + \omega^2 \tau^2} \qquad \varepsilon_{2,Drude}(\omega) = \frac{\omega_p^2 \tau}{\omega(1 + \omega^2 \tau^2)}$$

 $\omega_p = \sqrt{\frac{\varepsilon_{1} v_{free}}{\varepsilon_{\infty} \varepsilon_0 m_a^*}}$ Plasma frequency

Applied to free carrier polarization, dipolar interfacial polarization

Lyddane–Sachs–Teller relation

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 414 中村輝太郎 編著、強誘電体構造相転移 (裳華房, 1988)

Lyddane–Sachs–Teller (LST) relation

$$\frac{\varepsilon}{\varepsilon_{\infty}} = \frac{\omega_{L0}^2}{\omega_{T0}^2}$$

Lyddane-Sachs-Teller-Kurosawa (LSTK) relation

$$\frac{\varepsilon(\omega)}{\varepsilon_{\infty}(\omega)} = \prod \frac{\omega_{L0,i}^2 - \omega^2}{\omega_{T0,i}^2 - \omega^2}$$

- ω_{TO} : Resonance frequency of transversal phonon Polarization formed by phonon is macroscopically zero.
- At $\omega_{LO,i}$: $\varepsilon(\omega) = 0$ At $\omega_{TO,i}$: $\varepsilon_{\infty}(\omega) = 0$
- ω_{L0} : Resonance frequency of longitudinal phonon Polarization formed by phonon gives recovery force to phonon: Higher than ω_{T0}

Possible to estimate ϵ **from infrared / Raman spectrum**

	NaI	KBr	GaAs
ω_L / ω_T	1.44 ± 0.05	1.39 ± 0.02	1.07 ± 0.02
$[\epsilon(0)/\epsilon(\infty)]^{1/2}$	1.45 ± 0.03	1.38 ± 0.03	1.08

Dielectric constant and Born effective charge

上江洲由晃 緒、強誘電体 (内田老鶴圃)

Polarization change ΔP is related to ion displacement Δu_i .

- One may use formal ion charges or calculated ion charges to calculate the dielectric constant.
- This may work satisfactory for low ε materials. •
- For high ε materials, the ε value calculated from those ion charges • would very often underestimated

Ion charges inversely calculated from dielectric tensor and ion displacements

$$\Delta \boldsymbol{P} = \frac{e}{v} \sum Z^*_{i} \Delta u_i$$

 Z^*_i : Born effective charge (tensor in general case $Z^*_{i,ss'} = \frac{V}{e} \frac{\partial P}{\partial \Delta u_{i,ss'}}$

- Agree well with usual ion charge for low ε materials
- **Extraordinary large for high \varepsilon materials**

<= Redistribution of electron and its polarization are not negligible for some materials

Dielectric constant and Born effective charge

上江洲由晃 緒、強誘電体 (内田老鶴圃)

ABO ₃	$\mathbf{Z}_{\mathbf{A}}^{*}$	Z_{B}^{*}	Z* _{O(1)}	Z* ₀₍₂₎
Formal charge	+2	+4	-2	-2
CaTiO ₃	2.58	7.08	-5.65	-2
SrTiO ₃	2.56 2.54 2.55	7.26 7.12 7.56	-5.73 -5.66 -5.92	-2.15 -2.00 -2.12
BaTiO ₃	2.77 2.75 2.61	7.25 7.16 5.88	-5.71 -5.69 -4.43	-2.15 -2.11 -2.03
BaZrO ₃	2.73	6.03	-4.74	-2.01
PbTiO ₃	3.90	7.06	-5.83	-2.56
PbZrO ₃	3.92	5.85	-4.81	-2.48

For perovskite crystals, the B and O(1) have large Born effective charges: Effect of electron transfer between B and O(1)

Why perovskite-type crystals exhibit high ε?

Structural instability by the sub-lattice structure Case 1: Unit cell is stabilized by B-O A ion is loosely embedded Case 2: Unit cell is stabilized by A-O

B ion is loosely embedded

For ideal cubic perovskite structure:

Each ion makes just contact with neighbor ions if their ion radii satisfy

$$a = \sqrt{2} \left(r_A + r_O \right) = 2 \left(r_B + r_O \right)$$

 $t = \frac{r_A + r_O}{\sqrt{2}(r_B + r_O)} = 1.0$ Tolerance factor

For *t* apart from 1.0, the cubic structure would be distorted:

t	Lattice	Explanation	Example
>1	Hexagonal	Large $r_{\rm A}$ Small $r_{\rm B}$	BaNiO ₃
0.9-1	Cubic	Ideal contact	SrTiO ₃ , BaTiO ₃
0.71 - 0.9	Orthorhombic Rhombohedral	Small r_A in B ion interstitial	GdFeO ₃ (Orth.) CaTiO ₃ (Orth.)
<0.71	Different structures	Samll $r_{\rm A}, r_{\rm B}$	FeTiO ₃ (Tri.

Ferroelectrics

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 467

Temperature dependences for PbTiO₃

 ε diverges and discontinuously changes at the transition temperature (Curie temperature) T_C, like λ:
 λ transition Feature of first order phase transition

T > T_C Cubic structure No spontaneous polarization T < T_C stabilizes ions displaced and lattice distorted => Spontaneous polarization

Ferroelectrics: BaTiO₃

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 471 三井利夫 編著、強誘電体 (槇書店, 1969)

Sequential phase transition of BaTiO₃ *Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 471*

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 471 三井利夫 編著、強誘電体 (槇書店, 1969)

Two types of ferroelectricity

強誘電体物理入門

Displacement type ferroelectric

Small displacement of ions form P_s

(Ions are bound by recovery force to the high-symmetric position)

Perovskite type crystals BaTiO₃, Pb(Zr,Ti)O₃

Order-disorder type ferroelectric

Ions find different stable positions in high-symmetry structure, hop to another site in a long distance

NaNO₂ : NO₂ group KDP (KH₂PO₄): H⁺

Classification of ferroelectrics related phases

Dielectrics:

Symmetry: any **Spontaneous polarization: not necessary Piezoelectircs:** Part of dielectirics, Stress induces surface charges (voltage) / Voltage induces strain Symmetry: non-centrosymmetric Spontaneous polarization: not necessary (e.g., Wurtzite-type GaAs) 21 Space groups: 1, 2, m, 222, mm2, 4, -4, 422, 4mm, -42m, 3, 32, 3m, 6, -6, 622, 6mm, -62m, 23, -43m, 432 **Pyroelectircs:** Part of piezoelectrics, **Temperature change induces spontaneous polarization change** and surface charge change Symmetry: non-centrosymmetric & polar **Spontaneous polarization: necessary Dielectrics** 10 Space groups: 1, 2, m, mm2, 4, 4mm, 3, 3m, 6, 6mm piezoelectrics **Ferroelectrics:** Part of pyroelectrics, polarization is flipped by **pyroelectrics** external electric field Symmetry: non-centrosymmetric & polar ferroelectrics **Spontaneous polarization: necessary** 10 Space groups: 1, 2, m, mm2, 4, 4mm, 3, 3m, 6, 6mm

Feature of ferroelectrics: D - E / P - E hysteresis loop

 P_s : Spontaneous polarization E_{cor} : Coercive electric field

Application of ferroelectrics FeRAM (Ferroelectric RAM)

- Gate dielectric in conventional FET is replaced with ferroelectrics
- Spontaneous polarization Ps retains if gate voltage VGS is off

=> Non-volatile memory

-P_s induces positive charge at the insulatorsemiconductor interface, but n-type semi does not induce mobile carriers => FET is "Off" state

-P_s induces positive charge at the insulatorsemiconductor interface, but n-type semi does not induce mobile carriers => FET is "On" state

Applications of piezoelectrics Scanning Probe Microscope (SPM)

- Atomic Force Microscope (AFM)
- Scanning Tunneling Microscope (STM)

piezoelectrics is used as piezoactuator

Fast response, atomic-order precision

PZT: $d_{33} = 400 \times 10^{-12} \text{ m/V}$ $\sigma_{33} = \Delta l / l = d_{33}E$ For V = 100 V, l = 1 cm, $\sigma_{33} = d_{33}E = 400 \times 10^{-8}$ $\Delta l = 400 \text{ Å}$ For V = 0.1 V $\Delta l = 0.4 \text{ Å}$

https://ja.wikipedia.org/wiki/%E8%B5%B0%E6%9F%BB%E5%9E%8B%E3%83%88%E3%83%B3% E3%83%8D%E3%83%AB%E9%A1%95%E5%BE%AE%E9%8F%A1

Applications of piezoelectrics Surface Acoustic Wave (SAW) filter

- Surface acoustic wave is induced by piezoelectrics
- SAW is resonant with the piezoelectric body at the frequency f_r => Transmit signals with $f < f_r$
- f_r : up to several GHz, used e.g. in mobile phones

https://www.murata.com/jajp/group/kanazawamurata/products/device/saw

Spontaneous polarization and double-well potential

正田朋幸 訳 (B.A. Strykob, A.P. Rebaniok)、強誘電体物理入門(吉岡書店, 1993)

$4\pi/3$ catastrophe:

Slater theory of ferroelectricity

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 471 中村輝太郎 編著、強誘電体と構造相転移 (裳華房、1988)

$$\varepsilon_0 \chi = \frac{\sum_i N_i \alpha_i}{1 - \frac{1}{3\varepsilon_0} \sum_i N_i \alpha_i}$$

For single-type atom system

 $\varepsilon_0 \chi = \frac{N\alpha}{1 - \frac{1}{3\varepsilon_0} N\alpha}$

If $N\alpha$ has a temperature dependence $\frac{1}{N\alpha} = \frac{T}{C}$

 $\varepsilon_0 \chi = \frac{C}{T - C_{\frac{1}{3\varepsilon_0}}}$ Curie-Weiss law

The local field E_{local} formed by $N\alpha E_{local}$ increases $N\alpha E_{local}$, forms positive feedback

 $\Rightarrow P = \varepsilon_0 \chi$ is diverged if $T = C \frac{1}{3\varepsilon_0}$, *i.e.*, $\frac{1}{N\alpha} = \frac{1}{3\varepsilon_0}$

=> Spontaneous polarization P_s appears: Ferroelectric transition ' $4\pi/3$ catastrophe' (the coefficient $1/3\varepsilon_0$ is $4\pi/3$ in CGI unit)

$4\pi/3$ catastrophe: Slater theory of ferroelectricity

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 471

Landau Theory of Phase Transition

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 474

Perovskite-type ferroelectics takes cubic crystal structure in the paraelectric phase (high temperature)

=> Free energy is expanded by

 $\hat{F}(P;T,E) = -EP + g_0 + \frac{1}{2}g_2P^2 + \frac{1}{4}g_4P^4 + \frac{1}{6}g_6P^6 + \cdots, \qquad (37)$

Equilibrium polarization is obtained by

$$\frac{\partial \hat{F}}{\partial P} = 0 = -E + g_2 P + g_4 P^3 + g_6 P^5 + \cdots .$$
(38)

To explain ferroelectric transition (Curie-Weiss law), $g_2 = \gamma (T - T_0)$

Landau Theory of Phase Transition

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 476

Consider *E* = 0 **for spontaneous polarization Second-order transition**

If g_4 is positive, the g_6 term has no effect and can be neglected.

$$y(T - T_0)P_s + g_4 P_s^3 = 0 \quad , \tag{40}$$

For $T \ge T_0$: $P_s = 0$ For $T \le T_0$: $P_s^2 = (\gamma/g_4)(T - T_0)$

Landau Theory of Phase Transition

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 477

First-order transition

If g_4 is negative, the g_6 term must be retained.

$$\gamma(T - T_0)P_s - |g_4|P_s^3 + g_6 P_s^5 = 0 \quad , \tag{42}$$

$$P_s = 0 \text{ or } \gamma(T - T_0) - |g_4| P_s^2 + g_6 P_s^4 = 0 .$$
(43)

Anti-ferroelectricity

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 479

Anti-ferroelectricity

Kittel, Introduction to Solid State Physics, 8th ed (2005) p. 478

