金属の有限温度 T における電子密度 N の計算。
数値積分の制度の確認

N-integration-metal.py

import sys
import time
from math import exp, sqrt
import numpy as np
from scipy import integrate # 数値積分関数 integrateを読み込む
from matplotlib import pyplot as plt


"""
金属の有限温度 T における電子密度 N の計算。
数値積分の制度の確認
"""



#定数
pi = 3.14159265358979323846
h = 6.6260755e-34 # Js";
hbar = 1.05459e-34 # "Js";
c = 2.99792458e8 # m/s";
e = 1.60218e-19 # C";
kB = 1.380658e-23 # JK-1";


# Temperature
T = 300.0 # K

# Fermi energy
EF = 5.0 # eV

# EF近傍の nrange * kBTの範囲で積分
nrange = 6.0

# quad/romberg積分の相対積分精度、quad関数のGauss積分の最大次数/romberg積分の最大分割数
eps = 1.0e-8
maxorder = 100

#計算時間を計測する繰り返し数
ncycle = 300

# Treat argments
argv = sys.argv
if len(argv) >= 2:
    T = float(argv[1])
if len(argv) >= 3:
    EF = float(argv[2])

ekBT = e / (kB * T) # eV単位のエネルギーを E/(kBT) に変換する係数
dE = nrange * kB * T / e

# 状態密度関数
def De(E):
    return sqrt(E)

# FE分布関数
def fe(E, T, EF):
    global kBT
    if T == 0.0:
        if E < EF:
            return 1.0
        else:
            return 0.0
    return 1.0 / (exp((E - EF) * ekBT) + 1.0)

# 被積分関数を定義
def Defe(E, T, EF):
    return De(E) * fe(E, T, EF)



def main():
    print("T = ", T, "k EF = ", EF, " eV")
    print("")

    Ianaly = 2.0 / 3.0 * pow(EF, 1.5)
    print("Analytical integration for De(E) from ", 0, " to ", EF, " = ", Ianaly)
    ret = integrate.quad(De, 0.0, EF, epsrel = eps)
    print("quad : ret=", ret)
    ret = integrate.romberg(De, 0.0, EF, rtol = eps, divmax = maxorder)
    print("romberg: ret=", ret)
    print("")

# 積分範囲
    (Emin, Emax) = (0.0, EF + dE)
    print("(1) Integration range: ", Emin, " - ", Emax, " eV")
    t0 = time.time()
    for i in range(ncycle):
        ret = integrate.quad(lambda E: Defe(E, T, EF), Emin, Emax, epsrel = eps)
    dt = time.time() - t0
    print("quad : ret=", ret, " time=", dt, " s")
    t0 = time.time()
    for i in range(ncycle):
        ret = integrate.romberg(lambda E: Defe(E, T, EF), Emin, Emax, rtol = eps, divmax = maxorder)
    dt = time.time() - t0
    print("romberg: ret=", ret, " time=", dt, " s")
    print("")

# 積分範囲
    (Emin, Emax) = (0.0, EF - dE)
    print("(2) Integration range: ", Emin, " - ", Emax, " eV")
    Ianaly = 2.0 / 3.0 * (pow(Emax, 1.5) - pow(Emin, 1.5))
    print("Analytical integration for De(E) from ", Emin, " to ", Emax, " = ", Ianaly)
    t0 = time.time()
    for i in range(ncycle):
        ret = integrate.quad(lambda E: Defe(E, T, EF), Emin, Emax, epsrel = eps)
    dt = time.time() - t0
    print("quad : ret=", ret, " time=", dt, " s")
    t0 = time.time()
    for i in range(ncycle):
        ret = integrate.romberg(lambda E: Defe(E, T, EF), Emin, Emax, rtol = eps, divmax = maxorder)
    dt = time.time() - t0
    print("romberg: ret=", ret, " time=", dt, " s")
    print("")


# 積分範囲
    (Emin, Emax) = (EF - dE, EF + dE)
    print("(3) Integration range: ", Emin, " - ", Emax, " eV")
    t0 = time.time()
    for i in range(ncycle):
        ret = integrate.quad(lambda E: Defe(E, T, EF), Emin, Emax, epsrel = eps)
    dt = time.time() - t0
    print("quad : ret=", ret, " time=", dt, " s")
    t0 = time.time()
    for i in range(ncycle):
        ret = integrate.romberg(lambda E: Defe(E, T, EF), Emin, Emax, rtol = eps, divmax = maxorder)
    dt = time.time() - t0
    print("romberg: ret=", ret, " time=", dt, " s")
    print("")


if __name__ == '__main__':
    main()