Fundamentals of quantum mechanics, band theory, and first-principles calculation

量子力学、バンド理論の基礎、第一原理計算

神谷利夫 東京工業大学 科学技術創成研究院 フロンティア材料研究所

Fundamental of quantum mechanics Schrödinger equation and one-electron Schrödinger equation

量子力学の基礎 Schrödinger方程式と 一電子Schrödinger方程式

Newtonian equation of motion d^2

- $\mathbf{F} = m \frac{\alpha}{dt^2} \mathbf{r}$ Mathematical expression may be different for different coordinates other than the Cartesian coordinate
 - The definition of force includes ambiguity
 => Energy would be more fundamental physics concept

Generalized coordinate
$$\mathbf{r} = \mathbf{r}(q_1, q_2, \dots, q_n, t)$$

Lagrangian $L = T - V$
T: Kinetic energy V: Potential energy
Generalized (Canonical) $p_r = \frac{\partial L}{\partial \dot{q}_r}$
Euler-Lagrange equation $\frac{d}{\partial t} \frac{\partial L}{\partial \dot{q}_r} - \frac{\partial L}{\partial q_r} = 0$
(equivalent to Newtonian eq) $\frac{d}{\partial t} \frac{\partial L}{\partial \dot{q}_r} - \frac{\partial L}{\partial q_r} = 0$

Analytical mechanics: Hamilton equation

Hamiltonian $H(q, p, t) = \sum_{r} p_{r} \dot{q}_{r} - L(q, p, t)$ in Cartesian coord. $H(r, p, t) = \sum_{r} \frac{1}{2m_{i}} p_{i}^{2} + V(r, p)$ Hamilton's eq of motion $\frac{\partial q_{r}}{\partial t} = \frac{\partial H}{\partial p_{r}} \quad \frac{\partial p_{r}}{\partial t} = -\frac{\partial H}{\partial q_{r}}$ Poisson bracket (classical commutation relation) $\{A, B\} = \sum_{i} \left(\frac{\partial A}{\partial p_{i}} \frac{\partial B}{\partial q_{i}} - \frac{\partial B}{\partial p_{i}} \frac{\partial A}{\partial q_{i}}\right)$ Equation of motion $\dot{A} = \{H, A\} + \frac{\partial A}{\partial t}$ A, B: Physical quantities If A is independent of time $\dot{A} = \{H, A\}$

Quantization: Heisenberg's uncertainty principle

Derived from quantum commutation relation for conjugate physical qunatities: $qp_q - p_q q = [q, p_q]i\hbar$

$$\hat{x} = x, \qquad \hat{p}_x = \frac{h}{i} \frac{\partial}{\partial x}$$
$$\hat{x} = i\hbar \frac{\partial}{\partial p_x}, \quad \hat{p}_x = p_x$$

 $\frac{\hbar}{i} \frac{\partial}{\partial x}$ Both the upper and the bottom combinations satisfy the quantum commutation relation

$$\hat{x}\hat{p}_x - \hat{p}_x\hat{x} = i\hbar$$
$$\Delta x \cdot \Delta p_x$$

Schrödinger equation

Classical Hamiltonian (phys quantities are C (classical) numbers)

$$H(\mathbf{r}_1,\mathbf{r}_2,\cdots,\mathbf{p}_2,\mathbf{p}_1,\cdots,t) = \sum_r \frac{1}{2m_i} |\mathbf{p}_i|^2 + V(\mathbf{r}_1,\mathbf{r}_2,\cdots,\mathbf{p}_2,\mathbf{p}_1,\cdots)$$

Regard the physical quantities in *H* as **Q (quantum) numbers** and apply **the quantum commutation relations**

Commut. rel.
$$\hat{x}_i \hat{p}_{x,i} - \hat{p}_{x,i} \hat{x}_i = i\hbar$$
 \Rightarrow $\hat{x}_i = x_i, \ \hat{p}_{x,i} = \frac{n}{i} \frac{\partial}{\partial x_i}$

 $H\Psi(\mathbf{r}_{1},\mathbf{r}_{2},\cdots) = E\Psi(\mathbf{r}_{1},\mathbf{r}_{2},\cdots) \text{ Schrödinger equation}$ $\left\{-\frac{1}{2}\sum_{l}\nabla_{l}^{2} + V(\mathbf{r}_{1},\mathbf{r}_{2},\cdots)\right\}\Psi(\mathbf{r}_{1},\mathbf{r}_{2},\cdots) = E\Psi(\mathbf{r}_{1},\mathbf{r}_{2},\cdots)$

E is the eigenvalue of the H operator: Total energy Ψ : $|\Psi|^2$ corresponds to the electron density distribution

ゎ

- Many number simultaneous partial differential equation (6 x number of electrons)
- Very difficult to solve analytically

One-electron equation

- • ε_i : Eigenvalues of one-e equation
- • ϕ_i : Eigenvectors of one-e equation What are their physical meaning?

Atomic unit (a.u.): Dimensionless equations

$$\begin{bmatrix} -\frac{\hbar^2}{2m_e} \nabla^2 - \frac{e^2}{4\pi\varepsilon_0} \frac{Z}{r} \end{bmatrix} \psi(\mathbf{r}) = E \psi(\mathbf{r}) \qquad r' = ar \qquad E' = bE$$
$$\begin{bmatrix} -\frac{\hbar^2}{2m_e a^2} \nabla'^2 - \frac{e^2}{4\pi\varepsilon_0 a} \frac{Z}{r'} \end{bmatrix} \psi(a\mathbf{r}') = bE' \psi(a\mathbf{r}')$$

$$\left[-\frac{1}{2}\nabla^2 - \frac{Z}{r}\right]\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

Atomic unit: a.u.

$$a = \frac{4\pi\varepsilon_0\hbar^2}{m_e e^2} = 5.2918 \times 10^{-11} \text{m}$$
$$b = \frac{m_e e^4}{2(4\pi\varepsilon_0)^2\hbar^2} = 13.6 \text{ eV}$$

$$\begin{bmatrix} -\nabla^2 - 2\frac{Z}{r} \end{bmatrix} \psi(\mathbf{r}) = E\psi(\mathbf{r})$$
$$b = \frac{m_e e^4}{(4\pi\varepsilon_0)^2 \hbar^2} = 27.2 \,\mathrm{eV}$$

Unit of length: boh Radius of H 1s orbital Unit of energy #1: Rydberg Energy level of H 1s orbital

Unit of energy #2: Hartree

(One-electron) Hartree-Fock equation

Pauli exclusion principle: Anti-symmetry of wave function against an exchangeof two electrons

$$\begin{cases} -\frac{1}{2} \nabla_l^2 - \sum_m \frac{Z_m}{r_{lm}} + \sum_m \int \frac{\phi_m^*(\mathbf{r}_m) \phi_m(\mathbf{r}_m)}{r_{lm}} d\mathbf{r}_m + V_{Xl}(\mathbf{r}_l) \\ \phi_l(\mathbf{r}_l) = \varepsilon_l \phi_l(\mathbf{r}_l) \end{cases}$$
$$V_{Xl}(\mathbf{r}_l) = -\frac{\sum_m \int \frac{\phi_l^*(\mathbf{r}_l) \phi_m^*(\mathbf{r}_m) \phi_m(\mathbf{r}_m) \phi_l(\mathbf{r}_l)}{r_{lm}} d\mathbf{r}_m}{\phi_l^*(\mathbf{r}_l) \phi_l(\mathbf{r}_l)} \end{cases}$$

One-electron Schrödinger equation considering the Pauli exclusion principle: (one-electron) Hartree-Fock equation

The calculation of the four-center integrals of the exchange potential V_{Xl} is very heavy in particular for crystals

Band theory from LCAO (Linear Combination of Atomic Orbitals)

原子基底関数からのバンド理論

Approximation: Linear combination (LC) of basis functions

Complete system of basis set: Any function is expanded to a linear combination of basis functions in a complete system

ex.: Any 3D vector r is expressed by independent basis vectors a, b, c as

$$\mathbf{r} = C_{\mathrm{a}}a + C_{\mathrm{b}}b + C_{\mathrm{c}}c$$

ex: Fourier transform: Any function f(x) is expressed

by basis functions e^{ikx} as $f(x) = \int c(k) \exp(ikx) dk$

note: requires infinite number of basis functions

If the basis functions do not make a complete system, the expansion is just an approximation

=> In actual process, wave function Ψ is approximated by a linear combination of basis functions (not necessary a complete system) u_n

$$\Psi = \sum_{n=0}^{N} C_n u_n$$

*u*_n: Basis functions Plain Wave (PW) Atomic Orbital (AO) Gaussian-type Orbital (GTO) Slater-type (exponential) Orbital (STO) One-electron wave function etc

Valence bond theory and Molecular orbital theory

Problem of molecular orbital theory

For nuclei of the same element *A*, *B*: Consider LCAO of ϕ_A and ϕ_B $\phi(\mathbf{r}) = c_A \phi_A(\mathbf{r}) + c_B \phi_B(\mathbf{r})$ $\phi_+(\mathbf{r}) = 2^{1/2} [\phi_A(\mathbf{r}) \pm \phi_B(\mathbf{r})]$

$$\psi(1,2) = 2^{-1} [\phi_A(1) + \phi_B(1)] [\phi_A(2) + \phi_B(2)]$$

= 2⁻¹ [\phi_A(1)\phi_B(2) + \phi_B(1)\phi_A(2) + \phi_A(1)\phi_A(2) + \phi_B(1)\phi_B(2)]
Covalent bond Ionic bond

Problem: Even if A and B will be separated in infinite distance, the contribution of the ionic bond is constant at 50 % (i.e., the two-atom state does not appear)

=> Configuration Interaction (CI) method $\psi_{\pm}(\mathbf{r}_1, \mathbf{r}_2) = c_{\text{cov}\pm}\psi_{\text{cov}\pm}(\mathbf{r}_1, \mathbf{r}_2) + c_{\text{ion}\pm}\psi_{\text{ion}\pm}(\mathbf{r}_1, \mathbf{r}_2)$

Linear combination and variational principle: Roothaan-Hall equation

Ritz's variational principle:

Expectation value of Hamiltonian $\langle E \rangle$ for any wave function ψ is equal to or larger than E_0 , that of the ground state

 $\langle E \rangle = \langle \psi | H | \psi \rangle / \langle \psi | \psi \rangle \geq E_0$

 ψ is approximated by linear combination of basis functions u_n

$$\psi = \sum_{n=0}^{n} C_n u_n$$

Based on the variational principle, C_n are obtained by minimizing $\langle E \rangle$

$$=\frac{\sum_{m}\sum_{n}C_{m}^{*}C_{n}\langle u_{m}|H|u_{n}\rangle}{\sum_{n}C_{n}^{*}C_{n}\langle u_{m}|u_{n}\rangle}$$
$$\sum_{m}C_{m}\langle u_{n}|H|u_{m}\rangle-E\sum_{m}C_{m}\langle u_{n}|u_{m}\rangle=0$$

Many quantum equations will lead to eigenvalue problems

Roothaan-Hall equation

$$\sum_{m} C_{m} \langle u_{n} | H | u_{m} \rangle - E \sum_{m} C_{m} \langle u_{n} | u_{m} \rangle = 0$$

$$\mathbf{HC} = E\mathbf{SC}$$

$$\begin{vmatrix} H_{11} - ES_{11} & H_{12} - ES_{12} & \cdots & H_{1n} - ES_{1n} \\ H_{21} - ES_{21} & H_{22} - ES_{ss} & H_{2n} - ES_{2n} \\ \vdots & \ddots & \vdots \\ H_{n1} - ES_{n1} & H_{n2} - ES_{n2} & \cdots & H_{nn} - ES_{nn} \end{vmatrix} = 0$$

Fock matrix
Transfer matrix $H_{nm} = \langle u_n | H | u_m \rangle$
Overlap integral $S_{nm} = \langle u_n | u_m \rangle$

H₂ molecule

 $\varepsilon = \varepsilon_{1s} \pm h_{12}$

 $\phi_{\pm} = \frac{1}{\sqrt{2}} (\varphi_1 \pm \varphi_2)$

H₃ molecules

 $c_i^{(l)} = \exp(ik_l x_j)$ $k_l = \frac{2\pi}{Na} l \quad l \text{ are integers from 0 to 2}$ $k_l = \frac{2\pi}{Na} l \quad a \text{ is interatomic distance}$ $E(k_l) = \varepsilon_{1s} + 2h_{12}\cos(k_l a)$

Solution for ring H₃ molecule

If same wave functions align periodically...

The result of the ring H_3 can be extended to ring H_N molecules

$$\begin{pmatrix} \varepsilon_{1s} & h_{12} & 0 & 0 & h_{12} \\ h_{12} & \varepsilon_{1s} & h_{12} & 0 & 0 \\ 0 & h_{12} & \varepsilon_{1s} & \ddots & \vdots \\ 0 & 0 & \ddots & \ddots & h_{12} \\ h_{12} & 0 & \cdots & h_{12} & \varepsilon_{1s} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_N \end{pmatrix} = \varepsilon \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_N \end{pmatrix}$$

$$k_l = \frac{2\pi}{Na} l \quad c_i^{(l)} = \exp(ik_l x_j)$$

$$\phi_{kl} = \sum_{j} \varphi_{j} \exp(ik_{l}x_{j})$$
$$E(k_{l}) = \varepsilon_{1s} + 2h_{12}\cos(k_{l}a)$$

Solution of ring H_N molecule

Wave function of benzene (C₆H₆) and Bloch's theorem

Bloch's theorem

$$k_{l} = \frac{2\pi}{Na} l, c_{i}^{(l)} = \exp(ik_{l}x_{j})$$

$$\varphi_{kl} = \sum_{j} c_{i}^{(l)} \phi_{j} = \sum_{j} \phi_{j} \exp(ik_{l}x_{j}): \text{Bloch's theorem}$$

Periodic func Phase factor from Bloch's *k*

$$E(k_{l}) = \varepsilon_{1s} + 2h_{12} \cos(k_{l}a)$$

Equation for band calculation

$$\begin{pmatrix} -\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}) \end{pmatrix} \Psi_k(\mathbf{r}) = E \Psi_k(\mathbf{r})$$
$$\Psi_k(\mathbf{r}) = \exp(i\mathbf{k} \cdot \mathbf{r})u(\mathbf{r}) \qquad u(\mathbf{r}):$$
Funct

 $u(\mathbf{r})$: Function with the periodicity of crystal

$$\left(\frac{1}{2m}(-i\hbar\nabla + \hbar\mathbf{k})^2 + V(\mathbf{r})\right)u(\mathbf{r}) = H_{\mathbf{k}}u(\mathbf{r}) = Eu(\mathbf{r})$$

Expand by basis functions: $u(\mathbf{r}) = \sum_i C_i \phi_i(\mathbf{r})$

$$\sum_{j} \langle u_{i} | H_{k} | u_{j} \rangle C_{j} - E \sum_{j} \langle u_{i} | u_{j} \rangle C_{j} = 0$$
$$H(k)C = ESC$$

 $\begin{vmatrix} H_{11}(\mathbf{k}) - ES_{11} & H_{12}(\mathbf{k}) - ES_{12} & \cdots & H_{1n}(\mathbf{k}) - ES_{1n} \\ H_{21}(\mathbf{k}) - ES_{21} & H_{22}(\mathbf{k}) - ES_{ss} & H_{2n}(\mathbf{k}) - ES_{2n} \\ \vdots & \ddots & \vdots \\ H_{n1}(\mathbf{k}) - ES_{n1} & H_{n2}(\mathbf{k}) - ES_{n2} & \cdots & H_{nn}(\mathbf{k}) - ES_{nn} \end{vmatrix} = 0$

Band structures by DFT and Tight-binding: an example for Si

Bloch's wave number, k

Blochの波数ベクトル k

1D H crystal: *k* and crystal orbitals

Illustrative explanation of Bloch's k

 $\Gamma: k = (0, 0, 0)$

 $exp(ik \cdot r) = 1$: Phases are the same for all unit cells

Y: k = (0, 1/2, 0)

 $\exp(i\mathbf{k}\cdot\mathbf{r}) = \exp[i\pi(n_x)]$: Sign flip for odd n_y

X: $k = (\pi / a, 0, 0)$ [wave number unit]

(π, 0, 0) [phase unit]

(1/2, 0, 0) [Recip. Lattice param unit, $2\pi/a$] exp(ik $\cdot r$) = exp[i $\pi(n_x)$]: Sign flip for odd n_x

 $\exp(i\mathbf{k}\cdot\mathbf{r}) = \exp[i\pi(n_x+n_y)]$: Sign flip for odd n_x+n_y

Illustrative explanation of Bloch's k

 $\Delta_x : k = (1/4, 0, 0)$ [in $(2\pi/a, 2\pi/b, 2\pi/c)$]

 $\exp(i\mathbf{k}\cdot\mathbf{r}) = \exp[i\pi(n_x/2)]$: Phase returns to zero for every 4 units along the *a* axis

 $\Delta_x: k = (1/3, 0, 0)$ exp(ik r) = exp[i $\pi(n_x/3)$]: Phase returns to zero for every 3 units along the *a* axis

Effect of Bloch's k: Kronig-Penney model 杉山、結晶エ学スクールテキスト p. 110

Band theory from free electron (plain wave basis set: PW)

自由電子 (平面波基底関数) からの バンド理論

Free electron (empty lattice) band $\Psi_k(x) = C \exp[i(k + G_h)] = C \exp[i(k + ha^*)]$ $h = \dots, -2, -1, 0, 1, 2, \dots$

Boundary condition of Schrödinger equation $\frac{d^2}{dx^2}\psi(x) = 2(V(x) - E)\psi(x)$

Integrate the both side from $x_0 - h$ to $x_0 + h$ $\psi'(x_0 + h) - \psi'(x_0 - h) = 2 \int_{x_0 - h}^{x_0 + h} (V(x) - E) \psi(x) dx$ $= 2h [(V(x_0 + h) - E) \psi(x_0 + h) - (V(x_0 - h) - E) \psi(x_0 - h)]$ $\sim 2h [V(x_0 + h) - V(x_0 - h)] \psi(x_0)$

The last deformation assumes that $\Psi(x)$ is continuous at x_0 .

Further, the change of V(x) is smaller than 1/h at x_0 , the first differential should be continuous, $\Psi'(x+h) = \Psi'(x-h)$

Ex., for a finite well potential, as $hV_0 \Rightarrow 0$ for $h \Rightarrow 0$, the first differential should be continuous at x_0 as well.

Band theory: Kronig-Penney model

Solution of $\left(-\frac{\hbar^2}{2m}\frac{d^2}{dx^2}+V(x)\right)\phi = E\phi$ In well: $\phi = A \exp(i\alpha x) + B \exp(-i\alpha x)$ $\alpha = \sqrt{2mE}/\hbar$ In barrier $\phi = C \exp(\beta x) + D \exp(-\beta x)$ $\beta = \sqrt{2m(V_0 - E)}/\hbar$

Boundary condition at well/barrier interfaces: ϕ and ϕ' are continuous

Bloch's theorem: $\phi(x+a) = \lambda \phi(x)$ $\lambda = \exp(ika)$ $\begin{pmatrix} 1 & 1 & -1 & -1 \\ i\alpha & -i\alpha & -\beta & \beta \\ \exp(i\alpha w_w) & \exp(-i\alpha w_w) & -\lambda \exp(-\beta b) & -\lambda \exp(-\beta b) \\ i\alpha \exp(i\alpha w_w) & -i\alpha \exp(-i\alpha w_w) & -\beta\lambda \exp(-\beta b) & \beta\lambda \exp(-\beta b) \end{pmatrix} \begin{pmatrix} A \\ B \\ C \\ D \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$

The left determinant must be zero:

$$2\cos ka = \left(\frac{\beta^2 - \alpha^2}{\alpha\beta}\sin\alpha w_w \sin\beta b + 2\cos\alpha w_w \cosh\beta b\right)$$

Take the limit $b \Rightarrow 0$ for constant bV_0 :

$$2\cos ka = \left(\frac{\beta^2 - \alpha^2}{\alpha}b\sin\alpha a + 2\cos\alpha a\right) \longrightarrow \cos ka = \left(\frac{mV_0}{\hbar^2}\frac{b}{\alpha}\sin\alpha a + \cos\alpha a\right)$$

How to solve Kronig-Penney eq

Plain wave approx.: Transfer matrix method

 $k_i = \sqrt{2m(V_i - E)}/\hbar$ $\Psi_i = A_i \exp(ik_i x) + B_i \exp(-ik_i x)$ H. Mizuta, T. Tanoue, "The Physics and Applications of Resonant Tunnelling Diodes," Cambridge Univ Press (1995)

$$\begin{pmatrix} A_{N} \\ B_{N} \end{pmatrix} = \begin{pmatrix} \alpha^{+}_{N-1}P_{N-1} & \alpha^{-}_{N-1}/Q_{N-1} \\ \alpha^{-}_{N-1}Q_{N-1} & \alpha^{+}_{N-1}/P_{N-1} \end{pmatrix} \begin{pmatrix} A_{N-1} \\ B_{N-1} \end{pmatrix} = T_{N-1} \begin{pmatrix} A_{N-1} \\ B_{N-1} \end{pmatrix} = T_{N-1}T_{N-2} \begin{pmatrix} A_{N-2} \\ B_{N-2} \end{pmatrix} = T \begin{pmatrix} A_{0} \\ B_{0} \end{pmatrix}$$

$$T = T_{N-1}T_{N-2} \cdots T_{0}$$

$$\begin{array}{c} \mathbf{A}_{n} \text{ example of boundary condition:} \\ \text{Only propagation wave remains} \\ \text{in the transmitted region } (i = 0) \\ A_{0} = 1, B_{0} = 0 \end{array}$$

$$\begin{array}{c} \mathbf{A}_{n} \text{ example of boundary condition:} \\ \mathbf{A}_{n} = \mathbf{1}, B_{0} = 0 \end{array}$$

Position / nm
Tunneling in a single barrier

Wave function is scattered by the barrier (atom) and the transmittance must be < 1 => For crystal with many atom, the total transmittance should be zero?

Transmittance *T* will be zero for many atoms?

=> No, for more than two atoms (barriers), T can be 100 % at some energies

Similarity: Scattering of electrons and light

Transmission and reflection of electron

Transmission and reflection of light

Transmission through multiple quantum well (MQW): band

Transmission of *e*⁻ **through crystal**

- e⁻ can transmit crystal without scattering (T = 1) thanks to the interference of wave functions scattered by the 3D-periodically aligned atoms.
- Band structure indicates only the T = 1 states
- Electron states exist at any energy even in the bandgap, but those states accompany attenuation (scattering)

Transmission through disordered MQW

Transmission through disordered MQW

Transmission through disordered crystal

 Back ground periodic atoms contribute only to e⁻ transmission: we can consider only the difference from the perfect crystal

• Due to scattering and interference from the disordered structure, standing wave is formed in a localized region: Anderson localization

Plain wave approx.: *e*⁻ **is a wave Schrödinger equation**

 $V(\mathbf{r})$

$$\left[-\frac{\hbar^2}{2m}\nabla^2 + V(\mathbf{r})\right]\Psi(\mathbf{r}) = E\Psi(\mathbf{r})$$

By approximating V(r) is constant V_i in narrow region: e^{-}, E

$$\nabla^2 \Psi(\mathbf{r}) = \frac{2m}{\hbar^2} \left[E - V_i \right] \Psi(\mathbf{r})$$

$$\Psi(\mathbf{r}) = A \exp(i\mathbf{k}_i \cdot \mathbf{r}) + B \exp(-i\mathbf{k}_i \cdot \mathbf{r})$$

E-V

$$k_i = \sqrt{\frac{2m}{\hbar^2} (E - V_i)}$$

Exact $\Psi(r)$ is expressed as a connection of plain waves with different k in different regions

Plain wave approx.: Transfer matrix method

H. Mizuta, T. Tanoue, "The Physics and Applications of Resonant Tunnelling Diodes," Cambridge Univ Press (1995)

$$\Psi_i(x) = A_i \exp(ik_i x) + B_i \exp(-ik_i x) \qquad k_i = \sqrt{\frac{2m_i}{\hbar^2}} (E - V_i)$$

Boundary conditions

$$\Psi_{i}(x_{i+1}) = \Psi_{i+1}(x_{i+1}) \qquad m_{i}^{-1}\Psi_{i}(x_{i+1}) = m_{i+1}^{-1}\Psi_{i+1}(x_{i+1})$$

$$\begin{pmatrix} A_{i+1} \\ B_{i+1} \end{pmatrix} = \begin{pmatrix} \alpha^{+}{}_{i}P_{i} & \alpha^{-}{}_{i}/Q_{i} \\ \alpha^{-}{}_{i}Q_{i} & \alpha^{+}{}_{i}/P_{i} \end{pmatrix} \begin{pmatrix} A_{i} \\ B_{i} \end{pmatrix}$$

$$\alpha^{\pm}{}_{i} = \frac{1}{2} \left[1 \pm (m_{i+1} / m_{i})(k_{i} / k_{i+1}) \right]$$

$$P_{i} = \exp[i(k_{i} - k_{i+1})x_{i+1}]$$

$$Q_{i} = \exp[i(k_{i} + k_{i+1})x_{i+1}]$$

Plain wave basis

Fourier transform

Function with the period *a* is expressed by summation of plain waves with wave vectors $k_l = \frac{2\pi}{a} l$

1D:
$$f(x) = \sum_{l=-\infty}^{\infty} A_l \exp\left(i\frac{2\pi}{a}lx\right)$$

3D: $f(\mathbf{r}) = \sum_{h,k,l=-\infty}^{\infty} A_{h,k,l} \exp\left(i\mathbf{G}_{hkl} \cdot \mathbf{r}\right)$

Any function is exactly expressed if we can use infinite number of plain waves

• Due to limitation of time and memory, plain waves are limited

$$E_{cut} = \frac{\hbar^2}{2m_e} k_{cut}^2 = \frac{\hbar^2}{2m_e} \left| \boldsymbol{G}_{hkl,cut} \right|^2$$

Cut-off energy E_{cut} (or k_{cut} , $|G_{hkl,ut}|^{\circ}$ limits the accuracy of the basis set (For WIEN2k, $Rk_{max} = Min(R_{MT}) * k_{cut}$)

Plain wave method

Plain waves are employed as basis functions of LC

 $\varphi_{\mathbf{k}}(\mathbf{r}) = \exp(i\mathbf{k}\cdot\mathbf{r})\sum C_{hkl}u_{hkl}(\mathbf{r}) \qquad u_{hkl}(\mathbf{r}) = \exp[i\mathbf{G}_{\mathbf{hkl}}\cdot\mathbf{r}]$

Plain waves with G_{hkl} forms a complete system for periodic functions: If one can sum for all the *hkl* contribution, one can obtain the exact solution => In actual we need to approximated by $|G_{hkl}| < G_{max}$ ($\hbar \omega < E_{cut}$

$$\begin{vmatrix} H_{11} - ES_{11} & H_{12} - ES_{12} & \cdots & H_{1n} - ES_{1n} \\ H_{21} - ES_{21} & H_{22} - ES_{ss} & H_{2n} - ES_{2n} \\ \vdots & \ddots & \vdots \\ H_{n1} - ES_{n1} & H_{n2} - ES_{n2} & \cdots & H_{nn} - ES_{nn} \end{vmatrix} = 0$$

$$\langle u_{h'k'l'} | H | u_{hkl} \rangle = \int e^{-i(\mathbf{k} + \mathbf{G}_{h'k'l'}) \cdot \mathbf{r}} \left[-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}) \right] e^{i(\mathbf{k} + \mathbf{G}_{kl}) \cdot \mathbf{r}} d\mathbf{r}$$

$$= \delta_{hkl,h'k'l'} \frac{\hbar^2}{2m} k^2 + \frac{V^*(\mathbf{G}_{hkl} - \mathbf{G}_{h'k'l'})}{Most of calculation time would be paid for Fourier transformation of potential => GPU can accelerate calculation speed efficiently}$$

3s radial function for Na atom (DV-Xα)

How to reduce # of plain waves

- Orthogonalized Plane Wave Method: OPW Use combinations of plain waves that are orthogonal to core wave functions
- Pseudo Potential Method: PP Effective core potential (pseudo potential) that include the effects of nuclei charge and core electrons CASTEP, VASP, PWscf
- Augmented plain wave

 (L/APW: Linearlized/Augumented Plane Wave Method)
 Atomic wave functions are used in a limited sphere around nuclei (Muffin-Tin(MT) spheres), and plain waves are used outside

 WIEN2k
- Linear Combination of Atomic Orbitals: LCAO Atomic wave functions are used instead of plain waves
 CRYSTAL, Gaussian, Atomistic Toolkit (VNL), DV-Xα

First-principles calculations and DFT

第一原理計算と密度汎関数理論

General references for band calculations

初心者、材料学者向け

バンド構造を用いた材料開発(実践編) 神谷利夫、応用物理学会結晶工学分科会 結晶工学スクールテキスト第14版(2018年)

材料電子論入門第一原理計算の材料科学への応用 田中功、松永克志、大場史康、世古敦人共著、内田老鶴圃 (2017).

量子計算の実際

密度汎関数理論入門 理論とその応用 佐々木泰造、末原茂共訳、吉岡書店 (2014).

量子計算の物理的基礎

固体電子構造論密度汎関数理論から電子相関まで 藤原毅夫著、内田老鶴圃 (2015)

物質の電子状態

R.M. マーチン著、寺倉清之、寺倉郁子、善甫康成訳、 Springer Japan (2010). 密度汎関数法の基礎

常田貴夫著、講談社 (2012).

References for specific method / programs

・第一原理シミュレータ入門 -PHASE & CIAO-

山本 武範、濱田 智之、山崎 隆浩、 岡本 政邦

アドバンスソフト発行、2004年初版

- ・固体の中の電子 WIEN2k 入門追加版
 和光システム研究所、2006
- (Xα APW) スレーター分子軌道計算
 菅野暁、足立裕彦、塚田捷、東京大学出版会 1982
- •(LAPW) Planewaves, pseudopotentials, and the LAPW Method Ed. David J. Singh, Lars Nordstrom, Springer, 2006
- •(CRYSTAL) Hartree-Fock ab inito treatment of crystalline solids C. Pisani, R. Dovesi, C. Roetti, Springer, 1988
- The LMTO Method
 - H.L. Skriver, Springer, 1984
- •(Tight-Binding) 固体の電子構造と物性 W.A. ハリソン、現代工学社、1980

Definition of first-principles calculations

Broad definition:

Provide answers with required accuracy based on fundamental physics equation without empirical parameters

for Quantum calculations: Provide high-accuracy total energy based on quantum physics equations only from atomic species and coordinates

What are known from total energy?

FP calculation: Provide high accuracy total energy *E*

=> In principle, all properties can be calculated

- Stable structure: Find lattice parameters & atom coordinates with minimum E
- Electronic structure (band structure): $e_i(\mathbf{k}) = E(n_{\mathbf{k},i}) E(n_{\mathbf{k},i} 1)$
- Elastic tensors

$$U = U_0 + \frac{1}{2} \sum_{i,j,k,l} C_{ijkl} e_{ij} e_{kl}$$

$$\sigma_{ij} = \sum_{k,l} C_{ijkl} e_{kl}$$

Calculate $U(e_{ij})$ from e_{ij} Calculate stress σ_{ij} from e_{ij}

Dielectric tensors

$$U = U_0 + \frac{1}{2} \sum_{i,j} \varepsilon_{ij} E_i E_j$$
$$D_i = \varepsilon_0 + P_i = \sum_j \varepsilon_{ij} E_j$$

Calculate $U(E_i)$ from E_i

Polarization P_i are calculated from **Berry phase**

Choice of energy function *U***:**

0 K, constant V: Internal energy E (total energy given by DFT)

0 K, constant *P*: Enthalpy H = U + PV

>0 K, constant V: Helmholz energy

 $F = U + F_{electron} + F_{phonon}$ from electron DOS from phonon DOS

What are known by first-principles?

1. Visualize wave functions, charge density etc

Carrier transport path, defects, electron localization etc

2. High accuracy total energy

Stabile structure

•Atomic structures that are difficult determined by experiments (amorphous, soid-solutions, hydrogen etc)

- Formation energy etc
- •Defect formation energy, Equilibrium Fermi level

3. Quantitative calculations of electronic structure

Band structure Optical spectrum Carrier transport Chemical bond Magnetism

4. Electron – lattice coupling properties

Elastic tensor, dielectric tensor (Bery phase), piezoelectric tensor etc Phonon dispersion, IR / Raman spectra

Fundamental and variation of quantum theory

Difference between classical and quantum theory:

Planck constant $h = 6.626 \times 10^{-34}$ Js can be neglected or not

Conjugate physical quantities q, p_q must satisfy $[q, p_q] = qp_q - p_q q = ih/2\pi$

=> Naturally lead to the Heisenberg's uncertainty relationship

Formulation: Any of the following can be used, but some are better to solve some problem

- 1. Heisenberg's matrix mechanics: Matrix equation Eigen values (Eigen energies) and eigen states(algebraic vectors) are obtained
- 2. Wave mechanics (Schrödinger eq): Differential equation Incorporate quantum commutation relation to classical Hamiltonian Eigen values and eigen states (vectors in function space) are obtained

3. Second quantization (Quantum field theory): Noncommutative algebraic equation Quantize fields so as to satisfy the quantum commutation relation Eigen values and eigen states (state vectors $\prod_{q} \hat{a}_{q}^{\dagger} | 0 \rangle$:

Apply generation operator \hat{a}_q^{\dagger} to vacuum $|0\rangle$)

4. Density functional theory: Hohenberg-Kohn theorem
 Mathematics theorem: Physical properties are functionals of ρ(r)
 One-electron eq similar to Schrödinger eq is used (Kohn-Sham equation)

No program that can calculate everythin Similar accuracy should be expected if 'first-principles' codes are used

=> We can combine / connect several programs that have required functions

Example:

- 1. Stable structure, electron structure: VASP (fast)
- 2. Core levels, XAS: Wien2k (can calculate core levels)
- **3. COOP/COHP** : LOBSTER
- 4. Phonon dispersion : Phonopy
- **5. Raman scattering intensity : raman-sc**
- 6. Carrier transport : BoltzTraP

Density Function Theory: DFT

Hohenberg-Kohn theorem

- 1. For interacting electron gas in external potential $V_{\text{ext}}(\mathbf{r})$, $V_{\text{ext}}(\mathbf{r})$ is determined uniquely if all electron density $\rho(\mathbf{r})$ is given.
- Total energy is given as a functional of ρ(*r*) *E*[ρ(*r*)], and the ρ(*r*) that gives the minimum *E*[ρ(*r*)] determines the ground state
- Easy incorporate electron correlation effects
 => good for many particle problems
- Fundamentally, both 'exchange interaction' and 'electron correlation interaction' are exactly incorporated as functionals of total electron density
- But, we need approximation through the functionals
- Usually one-electron equation is employed to solve actual problems

One-electron eq: Kohn-Sham equation

Total energy

$$E = T_0[\rho] + \int V_{ext}(\mathbf{r})\rho(\mathbf{r})d\mathbf{r} + \frac{1}{2}\int \frac{\rho(\mathbf{r})\rho(\mathbf{r'})}{|\mathbf{r'}-\mathbf{r}|}d\mathbf{r}d\mathbf{r'} + E_{XC}[\rho]$$

Kinetic energyElectron – nucleiwithoutinteractioninteraction

Electron – electron interaction

Exchange interaction Correlation interaction

Variational principle

$$\int \rho(\mathbf{r}) = \sum_{i} \phi_{i}^{*}(\mathbf{r}) \phi_{i}(\mathbf{r})$$

$$\left(-\frac{\hbar^{2}}{2m} \nabla^{2} + V_{ext}(\rho(\mathbf{r})) + V_{e-e}(\rho(\mathbf{r})) + V_{XC}(\rho(\mathbf{r}))\right) \phi(\mathbf{r}) = \varepsilon \phi(\mathbf{r})$$
Identical to Schrödinger equation for a single electron s

Identical to Schrödinger equation for a single electron system $V_{\rm xc}$: Unknown. Assumption of DFT What are the physical meaing of $\phi(r)$ and ϵ ?

Schrödinger equation and DFT

Hartree-Fock (HF) eq (One-electron Schrödinger eq)

$$\left\{-\frac{1}{2}\nabla_l^2 + V_{ext}(\mathbf{r}_l) + V_{e-e}(\mathbf{r}_l) + V_{Xl}(\mathbf{r}_l)\right\}\phi_l(\mathbf{r}_l) = \varepsilon_l\phi_l(\mathbf{r}_l)$$

Kohn-Sham eq (DFT: Density Functional Theory)

$$\left\{-\frac{1}{2}\nabla^{2}+V_{ext}(\rho(\mathbf{r}))+V_{e-e}(\rho(\mathbf{r}))+V_{XC}(\rho(\mathbf{r}))\right\}\phi(\mathbf{r})=\varepsilon\phi(\mathbf{r})$$

- Similar equations
 - Schrödinger eq:
 - 1. Quantize classical Hamiltonian化
 - 2. The variables are coordinates of all electrons r_l
 - **3.** (HF) Energy eigen values correspond to ionization potential**DFT:**
 - 1. Hohenberg-Kohn theorem (Ground state is determined by $\rho(r)$)
 - 2. Depending only on the coordinate of the space *r*
 - 3. Energy eigen values correspond to chemical potential

Physical meaning of 'eigenvalue' ε_i

• Hartree-Fock: Koopmans theorem Energy difference by extracting an e^{-} from a orbital $\varepsilon_i = E(n_i) - E(n_i - 1)$

Corresponding to ionization potential Fundamentally corresponding to the binding energy measured by photoemission spectroscopy, but actually the calculated levels are overestimated (too deep)

• **DFT: Janak theorem**

$$\varepsilon_i = \frac{\partial E}{\partial n_i}$$

Corresponding to chemical potential Underestimated compared to PES binding energy

XPS and DOS of Zn-based oxides

How to understand band structure

バンド構造の読み方

How to read band structure

- Vertical axis indicate the energy of *e*⁻ That is, electron is more stable for deeper energy
- If not explained explicitly
 The energy origin is the Fermi energy
- *e*⁻ can take energy levels on the curves

Unoccupied states (Conduction band) Virtual states,

but empirically confirmed to reflect the actual CB

Occupied states Valence band Real states

How to read band structure

- Horizontal axis indicates 1. 6.0 5.0 Bloch's wave vector k k can roughly be regarded as 3.0 2.0 the propagation direction of e⁻ momentum 1.00.0What is wave number k ... -1.0 Newton mech: $E = \frac{m}{2}v^2 + V = \frac{P^2}{2m} + V$ -2.0 -3.0 -4.0 **P** $\rightarrow \hbar k$ Quant mech: $E = \frac{\hbar^2}{2}k^2 + V$ -5.0 -6.0 -7.0 -8.0 -9.0 -10.0バンド理論 (Blochの定理) -11.0 -12.0 $\phi_{kl} = \sum \exp(i\mathbf{k} \cdot \mathbf{r}_j) \cdot u_j(\mathbf{r} - \mathbf{r}_j)$ -13.0 -14.0 **k**: Bloch's wave number *ħk*: Crystal momentum
 - *Note*: The direction of velocity is -k for negative m

How to read band structure

How to know the definitions of the symbols - Crystallographic database –

Band structure: metal Mg

Band structure: Semiconductor

Si Indirect-transition type:

Optical absorption coefficient is very small near the fundamental bandgap

Band structure: Semiconductor

Si Indirect-transition type:

Weak optical absorption, not good for solar cell Slow recombination, good for solar cell Non-radiation recombination may be dominant, bad for LED

Band structure: Semiconductor

GaAs Direct-transition type: Strong optical absorption good for solar cell

Band structure: Semiconductor

GaAs Direct-transition type: Fast recombination Radiative recombination may be dominant, good for LED Indirect-transition at CBM, better for solar cell

First-principles calculation: Effective mass

第一原理計算:有効質量

Effective medium / Effective mass approximation

Semiconductor have many atoms that may scatter *e*⁻, but

Thanks to the Bloch's theorem (the band theory), e^{-} at the Bloch state E(k) is not scattered by the periodic atoms

 Electrons in crystal are treated as free electrons, but it has effective mass m_e^{*} and the charge -|*e*|

If one know ε , m_e^* , and m_h^* , a variety of properties would be calculated

Known from effective mass (free e⁻ approx.)

Mobility, conductivity
$$\mu = \frac{e\tau}{m_e^*}$$
 $\sigma = eN_{free}\mu$

Density of state function $M_{\rm C}$ is the degeneracy of LUMO

$$N(E) = M_{C} \frac{\sqrt{2}}{\pi^{2}} \frac{\sqrt{E - E_{C}}}{\hbar^{3}} m_{de}^{3/2}$$

Burstein-Moss shift ($E_{\rm F}$ of degenerated semiconductor) $\Delta E_g^{BM} = \frac{h^2}{m_{de}} \left(\frac{3N_e}{16\sqrt{2}\pi}\right)^{2/3}$

Effective density of state $N_{\rm C}, N_{\rm V}$

for isotropic CBM/VBM that does not have extra degeneracy other than spin, density-of-states effective mass m_{de} is equal to carrier effective mass m_{e}^{*} .

$$N_C = 2 \left(\frac{2\pi m_{de} k_B T}{h^2}\right)^{3/2} M_C$$

Thermal velocity $\frac{1}{2}m_{e}^{*}v_{th}^{2} = \frac{3}{2}k_{B}T$ $v_{th} = \sqrt{3k_{B}T/m_{e}^{*}}$ Fermi velocity $\frac{1}{2}m_{e}^{*}v_{F}^{2} = E_{F} - E_{C}$ $v_{F} = \sqrt{2(E_{F} - E_{C})/m_{e}^{*}}$

Effective mass

Effective mass in Si

$k \cdot p$ perturbation method

$$m_e^* = (1 + 2P^2 / m_e E_g)^{-1} m_e$$

Experimental

e		
Longitudinal	Transversal	DOS
$m_{1e}^* = 0.98$	$m_{\rm te}^{*} = 0.19$	$m_{\rm de}^{*} = 0.33$
h^+		-
Heavy hole	Light hole	
$m_{\rm hh}^{*} = 0.49$	$m_{\rm lh}^{*} = 0.16$	
Split-off (SO) band (spin-orbit)		DOS
$m_{\rm soh}^{*} = 0.29$	$m_{\rm dh}^{*} = 0.55$	

Calculated

$$e^{-1}$$
:
 $m_{1e}^{*} = 0.96m_{e}, m_{te}^{*} = 0.09m_{e}$

h⁺:

lh $0.19m_{e}$ (isotropic) hh $0.83m_{e}$ (<110>) $0.26m_{e}$ (<100>) Split off hole band $0.14m_{e}$ (<110>) $0.22m_{e}$ (<100>)

Fermi surface of Si

Widened Fermi surface => k for the same $E = \hbar k^2/2m_e$ is larger => Larger effective mass

First-principles calculation: Bandgap problem and functional

第一原理計算: バンドギャップ問題と汎関数

Origins of bandgap

- **1. Covalent materials, e.g. in Si** Energy splitting due to bonding and anti-bonding levels
- 2. Ionic materials, e.g., in oxides Energy level difference in cation and anion contribut much (covalent E_g + ionic E_g)

Wave function (Electron density) VASP, PBE96

Origins of bandgap

- 1. Covalent materials, e.g. in Si Energy splitting due to bonding and anti-bonding levels
- 2. Ionic materials e.g., in oxides Energy level difference in cation and anion contribut much (covalent E_g + ionic E_g)
- **3.** Interference at BZ boundary: Bragg diffraction appears in (nearly) free electron approximation, but usually not appear around $E_{\rm F}$. Important e.g. for Peiels transition
- 4. Strong electron correlation materials
 Eg can not be explained by one-electron mean-field
 approximation such as DFT.
 Important for d and f electrons systems.
 Can be treated by beyond DFT methods like LDA/GGA+U, GW
 approximations.

Functionals:

Exchange functionals and correlation functionsl

Density functional theory (DFT): Kohn-Sham equation

$$\begin{cases} -\frac{1}{2}\nabla^{2} + V_{ext}(\rho(\mathbf{r})) + V_{e-e}(\rho(\mathbf{r})) + V_{XC}(\rho(\mathbf{r})) \\ V_{XC} \text{ is unknown} \\ => \text{Many } V_{XC} \text{ have been proposed} \\ \text{ based on a variety of approximations} \end{cases}$$

Functionals:

Exchange functionals and correlation functionsl

L(S)DA: Local (Spin) Density Approximation

 $V_{Xc} = -3\alpha ((3/8\pi)\rho(\mathbf{r}))^{\frac{1}{3}}$ Local: determined only by the electron density at the point *r*

Non-local: Incorporate information other than the point r=> Use derivative of electron density \mathfrak{F} GGA: Generalized Gradient Approximation $x_{\sigma} = \left[\nabla \rho_{\sigma} \right] / \rho_{\sigma}^{\frac{4}{3}}$ $E_{xc} = E_{xc}^{LSDA} - b \sum_{\sigma} \int \rho_{\sigma}^{\frac{4}{3}} \frac{x_{\sigma}^{2}}{1 + 6bx_{\sigma} \sinh^{-1} x_{\sigma}} dv + E_{x}^{NL}$ Exact exchange: Hartree-Fock exchange potential

Functionals

LDA/LSDA:

CA (Ceperley-Alder)/PZ (Perdew-Zunger) [Perdew and Zunger, Phys. Rev. B 23 (1981) 5048]

PW92 (Perdew-Wang 92) [J.P. Perdew and Y. Wang, Phys. Rev. B **45** (1992) 13244]

GGA:

Becke88, PW91, PBE (PBE96) revPBE (Revised PBE) [Y. Zhang and W. Yang, Phys. Rev. Lett. 80 (1998) 890] **RPBE** (Revised PBE) [B. Hammer, L. B. Hansen, and J. K. Nørskov, Phys. Rev. B 59 (1999) 7413] **PBEsol** (PBE for solids) [J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou and K. Burke, Phys. Rev. Lett. 100 (2008) 136406]

WC (Wu-Cohen modification of PBE) [Z. Wu and R.E. Cohen, Phys. Rev. B **73** (2006) 235116]

Bandgap problem

Bandgap problem: HF vs DFT

Better methods for bandgap – beyond DFT –

- (i) Configuration Interaction: CI Employed for molecular orbital calculations (Gaussian etc). Very heavy for infinite solids (band calculation)
- For band calculations
- (i) Self-Interaction Correction: SIC
- (ii) Incorporate shielding effect to the EE potential
 - Screened Exchange: sX approximation ii) HE and DET give wrong Equalues in opposite dir
- (iii) HF and DFT give wrong Eg values in opposite directions
 - => Their potentials are mixed at an appropriate ratio: Hybrid DFT
 - (a) The mixing parameters are determined empirically so as to reproduce observed bandgaps for many molecules / crystals.
 B3PW91, B3LYP etc.
 - (b) The mixing parameters are determined theoretical.PBE0 and its shielding derivative (HSE)
- (iv) **GW** approximation (quasi-particle approximation)

Hybrid functionals: PBE0, HSE

PBE0 hybrid functional

 $E_{xc}^{SR,HFPBE0} = aE_x^{HF,SR} + (1-a)E_x^{PBE} + E_c^{PBE}$ Mixing parameter a = 1/4

HSE hybrid functional

$$E_{xc}^{\omega PBEh} = aE_x^{HF,SR}(\omega) + (1-a)E_x^{PBE,SR}(\omega) + aE_x^{PBE,LR}(\omega) + E_c^{PBE}$$

Mixing parameter a = 1/4Shielding param $\omega \rightarrow 0$: **PBE0** $\omega \rightarrow \infty$: **PBE96 (GGA)** (sometimes adjusted so as to reproduce observed bandgap) HSE03 $: \omega = 0.15$ HSE06 (HSE03 \mathcal{O} ERRATA): $\omega = 0.15/2^{1/2} = 0.106$ (HF part) $\omega = 0.15 \times 2^{1/3} = 0.189$ (PBE part)

> John P. Perdew, Matthias Ernzerhof and Kieron Burke J. Chem. Phys. **105** (1996) 9982 Jochen Heyd, Gustavo E. Scuseria, Matthias Ernzerhof J. Chem. Phys **118** (2003) 8207; **124** (2006) 219906

Band structures of cubic SrGeO₃

Origins of bandgap

- 1. Covalent materials, e.g. in Si Energy splitting due to bonding and anti-bonding levels
- 2. Ionic materials e.g., in oxides Energy level difference in cation and anion contribut much (covalent E_g + ionic E_g)
- 3. Interference at BZ boundary: Bragg diffraction appears in (nearly) free electron approximation, but usually not appear around $E_{\rm F}$. Important e.g. for Peiels transition
- 4. Strong electron correlation materials Eg can not be explained by one-electron mean-field approximation such as DFT. Important for d and f electrons systems. Can be treated by beyond DFT methods like LDA/GGA+U, GW approximations.

Effects of functional and U: ZnO

VASP

E_g: Comparison of functional

Self-interaction correction to the local-density approximation in the calculation of the energy band gaps ...

N. Hamada and S. Ohnishi, Phys. Rev. B 34, 9042 (1986)

The error due to LDA is larger for VB than for CB

FIG. 1. Energy band structures of Si along high symmetry lines. Solid curves represent the SIC-LDA calculation, and dashed curves the LDA. Fundamental energy band gap is given by the difference between the conduction band minimum near Xpoint and the valence band top at Γ point. Note that the energy gap in SIC-LDA is about two times of that in LDA.

Calculated E_{g} for semiconductors

[Japanese] 大橋直樹監修、バンドギャップエンジニアリング - 高効率デバイスへの挑戦-大場史康、第4章 半導体の物性シミュレーション(シーエムシー出版)

M. Marsman et al, J. Phys.: Condens. Matter, 20, 064201 (2008)

High-accuracy bandgaps by semi-empirical method (ATK-SE)

	ATK-SE [eV]	ATK-DFT [eV]	Experiment [eV]
InAs	0.28	0.80	0.36
Si	1.22	0.63	1.11
InP	1.35	1.78	1.35
GaAs	1.2	0.56	1.43
AlAs	2.27	1.39	2.16
GaP	2.47	1.63	2.26
AIP	2.61	1.56	2.45
SiC	2.15	1.36	2.36
Diamond	5.84	4.29	5.5

Comparison of calculated and experimental bandgaps. ATK-SE can provide reasonable bandgap values for a variety of materials

Puantum Wise

First-principles calculation: Optical spectrum

第一原理計算:光学スペクトル

Optical spectrum

(Optical dielectric function ε^* , Absorption coefficient α)

$$\mathcal{H} = \mathcal{H}_{0} - e\mathbf{r} \cdot \mathbf{E}$$

$$\varepsilon_{1}(\omega) = 1 + 4\pi \sum_{j} \frac{e^{2} \left| T_{0j} \right|^{2}}{\hbar} \frac{2\omega_{j}}{\omega_{j}^{2} - \omega^{2}}$$
Kramers-Kronig conversion

$$T_{ij} = \left\langle \Psi_{i} \left| \mathbf{r} \right| \Psi_{j} \right\rangle = \int \Psi_{i}^{*} \mathbf{r} \Psi_{j} d\mathbf{r}$$

$$\varepsilon_{2}(\omega) = \frac{4\pi Ne^{2}}{m} \sum_{j} f_{j} \pi \delta \left(\omega^{2} - \omega_{j}^{2} \right)$$

$$= \frac{4\pi Ne^{2}}{m} \sum_{j} f_{j} \frac{\pi}{2\omega} \left[\delta \left(\omega - \omega_{j} \right) + \delta \left(\omega + \omega_{j} \right) \right]$$

 $n(\omega) - i\kappa(\omega) = \sqrt{\varepsilon_1(\omega) - i\varepsilon_1(\omega)}$

$$\alpha(\omega) = \frac{4\pi}{\lambda} \kappa(\omega)$$

Optical spectra: LaCuOSe

WIEN2k+OPTICS

Bandgap of In₂O₃

Nature of the band gap of In₂O₃ revealed by first-principles calculations and x-ray spectroscopy Aron Walsh, Juarez L.D.F.Da Silva, Su-Huai Wei, C. Korber, A. Klein, L.F.J. Piper, Alex DeMasi, Kevin E. Smith, G. Panaccione, P. Torelli, D.J. Payne, A. Bourlange, and R.G. Egdell Phys. Rev. Lett. 100 (2008) 167402

Band structures of cubic SrGeO₃

Optical spectra og Ge-based oxides

Observed

PBE0

