Fundamentals of quantum mechanics, band theory, and first-principles calculation

量子力学、バンド理論の基礎、第一原理計算

神谷利夫 東京工業大学 科学技術創成研究院 フロンティア材料研究所

量子力学の基礎

Schrödinger方程式と 一電子Schrödinger方程式

Newtonの運動方程式

-般化座標
$$\mathbf{r} = \mathbf{r}(q_1, q_2, \cdots, q_n, t)$$

ラグランジアン $L = T - V$
(Lagrangian) $T:$ 運動エネルギー $V:$ ポテンシャルエネルギー
-般化(正準)運動量 $p_r = \frac{\partial L}{\partial \dot{q}_r}$
オイラー・ラグランジの方程式 $\frac{d}{dt} \frac{\partial L}{\partial \dot{q}_r} - \frac{\partial L}{\partial q_r} = 0$

解析力学: ハミルトン方程式と交換関係 ハミルトニアン $H(q, p, t) = \sum_{r} p_r \dot{q}_r - L(q, p, t)$ $H(r, p, t) = \sum_{r} \frac{1}{2m_i} p_i^2 + V(r, p)$ デカルト座標 ハミルトンの運動方程式 $\frac{\partial q_r}{\partial t} = \frac{\partial H}{\partial p_r}$ $\frac{\partial p_r}{\partial t} = -\frac{\partial H}{\partial q_r}$ ポアッソン括弧 (古典的な交換関係) $\{A, B\} = \sum_{i} \left(\frac{\partial A}{\partial p_{i}} \frac{\partial B}{\partial q_{i}} - \frac{\partial B}{\partial p_{i}} \frac{\partial A}{\partial q_{i}} \right)$ A, B: 物理量 運動方程式 $\dot{A} = \{H, A\} + \frac{\partial A}{\partial t}$ Aが時間に依存しなければ $\dot{A} = \{H, A\}$

量子化: Heisenbergの不確定性原理

共役な物理量の交換関係から自然に導出される: $qp_q - p_qq = [q, p_q]i\hbar$ $\hat{x} = x, \qquad \hat{p}_x = \frac{\hbar}{i} \frac{\partial}{\partial x}$ $\hat{x} = i\hbar \frac{\partial}{\partial p_x}, \quad \hat{p}_x = p_x$ $\hat{x} = \hat{p}_x \hat{x} = \hat{p}_x$ $\Delta x \cdot \Delta p_x \sim h$

Schrödinger方程式

古典的なハミルトニアン (物理量は C数) $H(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{p}_2, \mathbf{p}_1, \dots, t) = \sum_r \frac{1}{2m_i} |\mathbf{p}_i|^2 + V(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{p}_2, \mathbf{p}_1, \dots)$

ハミルトニアン中の物理変数 (x, pなど) を演算子 (**Q数**) とみなし、 **量子交換関係**を満たすように置き換える \hbar ∂

 $H\Psi(\mathbf{r}_{1},\mathbf{r}_{2},\cdots) = E\Psi(\mathbf{r}_{1},\mathbf{r}_{2},\cdots) \quad \text{Schrödinger} \\ \left\{-\frac{1}{2}\sum_{l}\nabla_{l}^{2} + V(\mathbf{r}_{1},\mathbf{r}_{2},\cdots)\right\}\Psi(\mathbf{r}_{1},\mathbf{r}_{2},\cdots) = E\Psi(\mathbf{r}_{1},\mathbf{r}_{2},\cdots)$

Eは H演算子の固有値:全エネルギー Ψ: |Ψ|² が電子密度分布

- ・多変数(粒子数×6)の連立偏微分方程式
- 一般的には、解析的に解けない

原子単位 (a.u.): 方程式の規格化

$$\begin{bmatrix} -\frac{\hbar^2}{2m_e} \nabla^2 - \frac{e^2}{4\pi\varepsilon_0} \frac{Z}{r} \end{bmatrix} \psi(\mathbf{r}) = E\psi(\mathbf{r}) \qquad r' = ar \qquad E' = bE$$

$$\begin{bmatrix} -\frac{\hbar^2}{2m_e a^2} \nabla'^2 - \frac{e^2}{4\pi\varepsilon_0 a} \frac{Z}{r'} \end{bmatrix} \psi(a\mathbf{r}') = bE'\psi(a\mathbf{r}')$$

$$\left[-\frac{1}{2}\nabla^2 - \frac{Z}{r}\right]\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

$$a = \frac{4\pi\varepsilon_0\hbar^2}{m_e e^2} = 5.2918 \times 10^{-11} \text{m}$$
$$b = \frac{m_e e^4}{2(4\pi\varepsilon_0)^2\hbar^2} = 13.6 \text{ eV}$$

$$\begin{bmatrix} -\nabla^2 - 2\frac{Z}{r} \end{bmatrix} \psi(\mathbf{r}) = E\psi(\mathbf{r})$$
$$b = \frac{m_e e^4}{(4\pi\varepsilon_0)^2 \hbar^2} = 27.2 \,\mathrm{eV}$$

共通単位: a.u.

単位: ハートリー (Hartree)

(一電子) Hartree-Fock方程式

Pauliの排他律:電子の奇数回の入替えに対する波動関数の反対称性

Pauliの排他律を考慮した一電子Schrödinger方程式 (一電子) Hartree-Fock方程式

・交換ポテンシャルの計算が四中心積分 特に固体の計算では問題

Band theory from LCAO (Linear Combination of Atomic Orbitals)

原子基底関数からのバンド理論

重要な近似法: 関数の一次結合

完全基底系:任意の関数は完全基底系の関数の一次結合に展開できる 例:任意の三次元ベクトル r は独立な基底ベクトルa, b, c を使って

 $\mathbf{r} = C_a \mathbf{a} + C_b \mathbf{b} + C_c \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c}$ 例: フーリエ変換: 任意の関数 f(x) は基底関数 e^{ikx} を使って $f(x) = \int c(k) \exp(ikx) dk \mathbf{c} \mathbf{c} \mathbf{c} \mathbf{c}$

完全基底系で展開できない場合は、近似となる:

正確な波動関数 Ψ を ある関数群 (何でもいい) u_nの一次結合で近似する

$$\Psi = \sum_{n=0}^{N} C_n u_n$$

 $u_n: 基底関数$
平面波 : Plain Wave (PW)
原子の波動関数 : Atomic Orbital (AO)
Gauss型 : Gaussian-type Orbital (GTO)
Slater型 (指数関数): Slater-type Orbital (STO)
一電子波動関数、基底状態の波動関数、など

原子価結合法と分子軌道法

水素分子を例に: 水素原子核: A, B 電子 : 1, 2 A,Bによる一電子波動関数: ϕ_A , ϕ_B

原子価結合法: 全波動関数の線形結合 $\psi(1,2) = c_{c1}\phi_A(1)\phi_B(2) + c_{c2}\phi_A(2)\phi_B(1) + c_{i1}\phi_A(1)\phi_A(2) + c_{c2}\phi_B(1)\phi_B(2)$ 共有結合 $\psi_{cov\pm}(1,2) = 2^{-1/2} \Big[\phi_A(1)\phi_B(2) \pm \phi_A(2)\phi_B(1)\Big] \quad E_{\pm} = \frac{H_{11} \pm H_{12}}{1 + S_{12}}$ 分子軌道法: LCAOで一電子軌道 $\varphi_i(r_i)$ を作ってから全波動関数を組む² $\psi(1,2) = \varphi_1(1)\varphi_2(2)$ 一電子軌道: $\varphi_i(\mathbf{r}) = c_1\phi_A(\mathbf{r}) + c_2\phi(\mathbf{r})$

> $\psi(1,2) = 2^{-1} [\phi_A(1) + \phi_B(1)] [\phi_A(2) + \phi_B(2)]$ = 2⁻¹ [\phi_A(1)\phi_B(2) + \phi_B(1)\phi_A(2) + \phi_A(1)\phi_A(2) + \phi_B(1)\phi_B(2)] 共有結合 イオン結合

分子軌道法の問題

同種の原子核 A, B: 原子の基底関数 (AO) ϕ_A , ϕ_B の **一次結合 (Linear Combination: LC) (LCAO) を考える** $\phi(\mathbf{r}) = c_A \phi_A(\mathbf{r}) + c_B \phi_B(\mathbf{r})$

 $\phi_{\pm}(\mathbf{r}) = 2^{1/2} \big[\phi_A(\mathbf{r}) \pm \phi_B(\mathbf{r}) \big]$

問題点: A, B が無限に離れても イオン結合の状態が必ず50%含まれる(原子に戻らない)

配置間相互作用 (Configuration Interaction: CI法)

$$\psi_{\pm}(\mathbf{r}_1,\mathbf{r}_2) = c_{\text{cov}\pm}\psi_{\text{cov}\pm}(\mathbf{r}_1,\mathbf{r}_2) + c_{\text{ion}\pm}\psi_{\text{ion}\pm}(\mathbf{r}_1,\mathbf{r}_2)$$

一次結合と変分法: Roothaan-Hall方程式

リッツの変分原理:

任意の波動関数 Ψ に対するハミルトニアン Hの期待値 <H> は 基底状態のエネルギー固有値 E₀よりも大きいか等しい

 $< H >= \langle \psi | H | \psi \rangle / \langle \psi | \psi \rangle \ge E_0$

正確な波動関数¥を基底関数 unの一次結合で近似する

$$\Psi(\mathbf{r_i}) = \sum_{n=0}^{\infty} C_n u_n(\mathbf{r_i})$$

変分原理により、エネルギーの期待値を係数C_nあるいはC_m*で最小化 $\sum \sum C_m^* C_n \langle u_m | H | u_n \rangle$

$$\langle E \rangle = \frac{\sum_{m=n}^{\infty} \sum_{n=n}^{\infty} w_{n} \wedge \langle w_{n} \rangle + w_{n}}{\sum_{n=n}^{\infty} C_{n}^{*} C_{n} \langle u_{m} | u_{n} \rangle}$$

$$\sum_{m} C_{m} \left\langle u_{n} \left| H \right| u_{m} \right\rangle - E \sum_{m} C_{m} \left\langle u_{n} \left| u_{m} \right\rangle = 0$$

т

量子計算の方程式は多くの場合、固有値問題に帰着する

Roothaan-Hall方程式

$$\sum_{m} C_{m} \langle u_{n} | H | u_{m} \rangle - E \sum_{m} C_{m} \langle u_{n} | u_{m} \rangle = 0$$
HC = ESC

$$\begin{vmatrix} H_{11} - ES_{11} & H_{12} - ES_{12} & \cdots & H_{1n} - ES_{1n} \\ H_{21} - ES_{21} & H_{22} - ES_{ss} & H_{2n} - ES_{2n} \\ \vdots & \ddots & \vdots \\ H_{n1} - ES_{n1} & H_{n2} - ES_{n2} & \cdots & H_{nn} - ES_{nn} \end{vmatrix} = 0$$

共鳴積分 (Fock matrix)
移送積分 (transfer matrix) $H_{nm} = \langle u_n | H | u_m \rangle$
重なり積分(transfer integral) $S_{nm} = \langle u_n | u_m \rangle$

 $\varepsilon = \varepsilon_{1s} \pm h_{12}$

 $\phi_{\pm} = \frac{1}{\sqrt{2}} (\varphi_1 \pm \varphi_2)$

	Eノ	7	T
ノノ・	於刀	.	П3

H₃
直線状
$$\begin{pmatrix} \varepsilon_{1s} & h_{12} & 0 \\ h_{12} & \varepsilon_{1s} & h_{12} \\ 0 & h_{12} & \varepsilon_{1s} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \varepsilon \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$$

 $\phi_{\pm} = \frac{1}{\sqrt{2}} (\varphi_+ \pm \varphi_2), \varphi_- = \frac{1}{2} (\varphi_1 + \sqrt{2}\varphi_2 + \varphi_3)$
 $\varepsilon_{\pm} = \varepsilon_{1s} \pm \sqrt{2}h_{12}, \varepsilon_{non-bonding} = \varepsilon_{1s}$
H₃
環状 $\begin{pmatrix} \varepsilon_{1s} & h_{12} & h_{12} \\ h_{12} & \varepsilon_{1s} & h_{12} \\ h_{12} & h_{12} & \varepsilon_{1s} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix} = \varepsilon \begin{pmatrix} c_1 \\ c_2 \\ c_3 \end{pmatrix}$
 $c_i^{(l)} = \exp(ik_l x_j)$

 $k_l = \frac{2\pi}{Na} l \quad l \ l \ con 20 整数, a \ con set a \ con set$

 $\varepsilon(k_l) = \varepsilon_{1s} + 2h_{12}\cos(k_l a)$

1種類の波動関数が周期的に 並んでいる場合の解

環状H₃分子の結果は、N個の水素原子が環状に繋がっているH_N分子にそのまま拡張できる。

$$\begin{pmatrix} \varepsilon_{1s} & h_{12} & 0 & 0 & h_{12} \\ h_{12} & \varepsilon_{1s} & h_{12} & 0 & 0 \\ 0 & h_{12} & \varepsilon_{1s} & \ddots & \vdots \\ 0 & 0 & \ddots & \ddots & h_{12} \\ h_{12} & 0 & \cdots & h_{12} & \varepsilon_{1s} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_N \end{pmatrix} = \varepsilon \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_N \end{pmatrix}$$

$$\phi_{kl} = \sum_{j} \varphi_{j} \exp(ik_{l}x_{j})$$
$$E(k_{l}) = \varepsilon_{1s} + 2h_{12}\cos(k_{l}a)$$

ベンゼン(C₆H₆)の波動関数とBlochの定理

Blochの定理

バンド計算の方程式

$$\begin{pmatrix} -\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}) \end{pmatrix} \Psi_k(\mathbf{r}) = E \Psi_k(\mathbf{r}) \\ \Psi_k(\mathbf{r}) = \exp(i\mathbf{k} \cdot \mathbf{r}) u(\mathbf{r}) \qquad u(\mathbf{r}): 結晶の周期をもつ周期関数$$

$$\left(\frac{1}{2m}(-i\hbar\nabla + \hbar\mathbf{k})^2 + V(\mathbf{r})\right)u(\mathbf{r}) = H_{\mathbf{k}}u(\mathbf{r}) = Eu(\mathbf{r})$$

基底関数で展開: $u(\mathbf{r}) = \sum_i C_i \phi_i(\mathbf{r})$

$$\sum_{j} \langle u_{i} | H_{k} | u_{j} \rangle C_{j} - E \sum_{j} \langle u_{i} | u_{j} \rangle C_{j} = 0$$
$$H(k)C = ESC$$

 $\begin{vmatrix} H_{11}(\mathbf{k}) - ES_{11} & H_{12}(\mathbf{k}) - ES_{12} & \cdots & H_{1n}(\mathbf{k}) - ES_{1n} \\ H_{21}(\mathbf{k}) - ES_{21} & H_{22}(\mathbf{k}) - ES_{ss} & H_{2n}(\mathbf{k}) - ES_{2n} \\ \vdots & \ddots & \vdots \\ H_{n1}(\mathbf{k}) - ES_{n1} & H_{n2}(\mathbf{k}) - ES_{n2} & \cdots & H_{nn}(\mathbf{k}) - ES_{nn} \end{vmatrix} = 0$

DFTとTight-bindingのバンド構造: Siの例

Bloch's wave number, k

Blochの波数ベクトル k

ー次元水素結晶: 波数ベクトルと結晶軌道

a=0.74, b=c=14.8 Å

<u>1/2a=0.676 Å⁻¹</u>

Blochのkベクトルの意味

Г: *k* = (0, 0, 0) exp(i*k*·*r*) = 1: どの単位格子の位相も同じ

Y: k = (0, 1/2, 0)

 $exp(ik r) = exp[i\pi(n_x)]: n_y$ が奇数の時反転

- $X: k = (\pi / a, 0, 0)$ [波数単位]
 - (π, 0, 0) [位相単位]

(1/2,0,0) [逆格子定数単位 (2π/a, 2π/b, 2π/c)]

 $\exp(i\mathbf{k}\cdot\mathbf{r}) = \exp[i\pi(n_x)]: n_x$ が奇数の時反転

$$M: k = (1/2, 1/2, 0)$$

exp(ik:r) = exp[

 $\exp(i\mathbf{k}\cdot\mathbf{r}) = \exp[i\pi(n_x + n_y)]: n_x + n_y$ が奇数の時反転

Blochのkベクトルの意味

 $\Delta_x : k = (1/4, 0, 0)$ [in $(2\pi/a, 2\pi/b, 2\pi/c)$] exp $(ik \cdot r) = exp[i\pi(n_x/2)]$: a方向に4周期で位相が戻る

 Δ_x : k = (1/3, 0, 0)exp(i $k \cdot r$) = exp[i $\pi(n_x/3)$]: *a*方向に3周期で位相が戻る

杉山、結晶工学スクールテキスト p. 110

Band theory from free electron (plain wave basis set: PW)

自由電子 (平面波基底関数) からの バンド理論

自由電子 (空格子) バンド $\Psi_k(x) = C \exp[i(k+G_h)] = C \exp[i(k+ha^*)]$ $h = \cdots, -2, -1, 0, 1, 2, \cdots$

Schrödinger方程式の境界条件
$$\frac{d^2}{dx^2}\psi(x) = 2(V(x) - E)\psi(x)$$

両辺を
$$x_0 - h$$
から $x_0 + h$ の範囲で積分する
 $\psi'(x_0 + h) - \psi'(x_0 - h) = 2 \int_{x_0 - h}^{x_0 + h} (V(x) - E) \psi(x) dx$
 $= 2h [(V(x_0 + h) - E) \psi(x_0 + h) - (V(x_0 - h) - E) \psi(x_0 - h)]$
 $\sim 2h [V(x_0 + h) - V(x_0 - h)] \psi(x_0)$

最後の変形で、 x_0 で $\Psi(x)$ が連続とした。

さらに、*x*₀ で V(*x*) の変化が 1/*h* より小さければ、 *h* => 0 で 一次微分は連続 Ψ'(*x*+*h*) = Ψ'(*x*-*h*)

有限の井戸型ポテンシャルでは $h \Rightarrow 0$ で $hV_0 \Rightarrow 0$ であるから、 一次微分も x_0 で連続である必要がある。

バンド理論: Kronig-Penneyモデル

Blochの定理: $\phi(x+a) = \lambda \phi(x)$ $\lambda = \exp(ika)$ $\begin{pmatrix} 1 & 1 & -1 & -1 \\ i\alpha & -i\alpha & -\beta & \beta \\ \exp(i\alpha w_w) & \exp(-i\alpha w_w) & -\lambda \exp(-\beta b) & -\lambda \exp(-\beta b) \\ i\alpha \exp(i\alpha w_w) & -i\alpha \exp(-i\alpha w_w) & -\beta\lambda \exp(-\beta b) & \beta\lambda \exp(-\beta b) \end{pmatrix} \begin{pmatrix} A \\ B \\ C \\ D \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$

左辺の行列の行列式が0になる必要がある

$$2\cos ka = \left(\frac{\beta^2 - \alpha^2}{\alpha\beta}\sin \alpha w_w \sin \beta b + 2\cos \alpha w_w \cosh \beta b\right)$$

$$bV_0 \, \mathbf{i} - \mathbf{c} \mathbf{o} \, \mathbf{k} \mathbf{d} \, \mathbf{e} \, \mathbf{b} \Longrightarrow \mathbf{0} \, \mathbf{o} \, \mathbf{i} \mathbf{d} \mathbf{k} \mathbf{b} \mathbf{b}$$

$$2\cos ka = \left(\frac{\beta^2 - \alpha^2}{\alpha}b\sin \alpha a + 2\cos \alpha a\right) \mathbf{b} \cos ka = \left(\frac{mV_0}{\hbar^2}\frac{b}{\alpha}\sin \alpha a + \cos \alpha a\right)$$

Kronig-Penney方程式の解法

平面波近似: 転送行列法

H. Mizuta, T. Tanoue, "The Physics and Applications of $k_i = \sqrt{2m(V_i - E)/\hbar}$ Resonant Tunnelling Diodes," Cambridge Univ Press (1995) $\Psi_i = A_i \exp(ik_i x) + B_i \exp(-ik_i x)$ $\begin{pmatrix} A_{N} \\ B_{N} \end{pmatrix} = \begin{pmatrix} \alpha^{+}_{N-1}P_{N-1} & \alpha^{-}_{N-1}/Q_{N-1} \\ \alpha^{-}_{N-1}Q_{N-1} & \alpha^{+}_{N-1}/P_{N-1} \end{pmatrix} \begin{pmatrix} A_{N-1} \\ B_{N-1} \end{pmatrix} = T_{N-1} \begin{pmatrix} A_{N-1} \\ B_{N-1} \end{pmatrix} = T_{N-1}T_{N-2} \begin{pmatrix} A_{N-2} \\ B_{N-2} \end{pmatrix} = T \begin{pmatrix} A_{0} \\ B_{0} \end{pmatrix}$ *i=*0 $T = T_{N-1}T_{N-2}\cdots T_0$ E=5eV 境界条件例: 4eV 4 Psi(real part) 放出側 (i = 0) では 3eV 進行波のみが残る 3 2eV $A_0 = 1, B_0 = 0$ 2 V(x)1eV () -2 2 ()

Position / nm
1枚の障壁のトンネル

2枚の障壁のトンネル(QW, RTD)

=> 原子 (障壁) が 2つ以上あれば、特定のエネルギーで 100% 透過する

電子と光の散乱

光の透過と反射

$$R = \left(\frac{n_2 - n_1}{n_2 + n_1}\right)^2$$

$$R = \left(\frac{r_1 + r_2 \exp(-i\delta)}{1 + r_1 r_2 \exp(-i\delta)}\right)^2$$

$$\delta = 4\pi n_1 d$$

$$T = 1$$

多重量子井戸 (MQW) の透過: バンド

結晶における電子の透過

- ・電子が結晶を透過できる (T = 1) のは、
 三次元に配列した原子からの散乱波が干渉する結果
- ・バンド構造は、透過できる状態のみを表示
- ・任意の運動エネルギーにおいて状態は存在する
 ただし、そのほとんどは減衰(散乱)を伴う

乱れのあるMQWの透過

乱れのあるMQWの透過

乱れのある結晶における電子の透過

・背景の結晶部分は電子の透過だけに寄与するので
 差分だけ考える

 ・乱れた構造による散乱と干渉の結果、定在波をつくる アンダーソン局在

平面波近似: 電子は波である Schrödinger方程式

$$\Psi(\mathbf{r}) = A \exp(i\mathbf{k}_i \cdot \mathbf{r}) + B \exp(-i\mathbf{k}_i \cdot \mathbf{r})$$

$$k_i = \sqrt{\frac{2m}{\hbar^2} \left(E - V_i \right)}$$

区間ごとに波数の異なる平面波で接続できる

平面波近似: 転送行列法

H. Mizuta, T. Tanoue, "The Physics and Applications of Resonant Tunnelling Diodes," Cambridge Univ Press (1995)

$$\Psi_i(x) = A_i \exp(ik_i x) + B_i \exp(-ik_i x) \qquad k_i = \sqrt{\frac{2m_i}{\hbar^2}} (E - V_i)$$

境界条件

$$\begin{split} \Psi_{i}(x_{i+1}) &= \Psi_{i+1}(x_{i+1}) \qquad m_{i}^{-1} \Psi_{i}'(x_{i+1}) = m_{i+1}^{-1} \Psi_{i+1}'(x_{i+1}) \\ \begin{pmatrix} A_{i+1} \\ B_{i+1} \end{pmatrix} &= \begin{pmatrix} \alpha^{+}{}_{i}P_{i} & \alpha^{-}{}_{i}/Q_{i} \\ \alpha^{-}{}_{i}Q_{i} & \alpha^{+}{}_{i}/P_{i} \end{pmatrix} \begin{pmatrix} A_{i} \\ B_{i} \end{pmatrix} \\ & \alpha^{\pm}{}_{i} = \frac{1}{2} \left[1 \pm (m_{i+1}/m_{i})(k_{i}/k_{i+1}) \right] \\ & P_{i} = \exp[i(k_{i} - k_{i+1})x_{i+1}] \\ & Q_{i} = \exp[i(k_{i} + k_{i+1})x_{i+1}] \end{split}$$

平面波基底

Fourier変換 周期 *a* の関数は 必ず、波数 $k_l = \frac{2\pi}{a}l$ の平面波の和で表される 1次元: $f(x) = \sum_{l=-\infty}^{\infty} A_l \exp\left(i\frac{2\pi}{a}lx\right)$ 3次元: $f(\mathbf{r}) = \sum_{h,k,l=-\infty}^{\infty} A_{h,k,l} \exp(i\mathbf{G}_{hkl}\cdot\mathbf{r})$

・無限個の平面波基底を使えれば、 どのような関数も正確に表現できる

・計算時間、メモリーの制限から、有限個の平面波だけを使う

$$E_{cut} = \frac{\hbar^2}{2m_e} k_{cut}^2 = \frac{\hbar^2}{2m_e} |\mathbf{G}_{hkl,cut}|^2$$

cut-offエネルギーが基底の精度を決める
(WIEN2kの場合: $Rk_{max} = Min(R_{MT})^* k_{cut}$)

平面波法

ー次結合の基底関数として平面波を使う $\varphi_{\mathbf{k}}(\mathbf{r}) = \exp(i\mathbf{k} \cdot \mathbf{r}) \sum C_{hkl} u_{hkl}(\mathbf{r}) \qquad u_{hkl}(\mathbf{r}) = \exp[i\mathbf{G}_{\mathbf{hkl}} \cdot \mathbf{r}]$

波数 G_{hkl}の平面波は格子周期の関数の完全基底系: すべての hkl について和を取れば、完全に正しい解になる => **実際の計算では** |G_{hkl}| < G_{max} (ħω < E_{cut})の範囲で近似する

$$\begin{cases} H_{11} - ES_{11} & H_{12} - ES_{12} & \cdots & H_{1n} - ES_{1n} \\ H_{21} - ES_{21} & H_{22} - ES_{ss} & H_{2n} - ES_{2n} \\ \vdots & \ddots & \vdots \\ H_{n1} - ES_{n1} & H_{n2} - ES_{n2} & \cdots & H_{nn} - ES_{nn} \end{cases} = 0$$

$$\langle u_{h'k'l'} | H | u_{hkl} \rangle = \int e^{-i(\mathbf{k} + \mathbf{G}_{h'k'l'}) \cdot \mathbf{r}} \left[-\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}) \right] e^{i(\mathbf{k} + \mathbf{G}_{kl}) \cdot \mathbf{r}} d\mathbf{r}$$

$$= \delta_{hkl,h'k'l'} \frac{\hbar^2}{2m} k^2 + V^* (\mathbf{G}_{hkl} - \mathbf{G}_{h'k'l'})$$

実際の計算のほとんどがポテンシャルのフーリエ変換 => GPUで高速化が容易

Na原子の3s動径関数 (DV-Xα法で計算)

必要な平面波を減らすエ夫

直交化平面波法 (OPW: Orthogonalized Plane Wave Method)
 原子の内殻波動関数を使い、内殻軌道に直交する平面波を使う

「擬ポテンシャル法 (PP: Pseudo Potential Method)
 原子核の静電ポテンシャルが内殻電子によって平滑化される効果を
 「擬ポテンシャル」として扱うことにより、空間的変動の小さい有効ポテンシャルと
 価電子軌道を取り扱う

CASTEP, VASP, PWscf

・補強された平面波法

(L/APW: Linearlized/Augumented Plane Wave Method) 原子の波動関数でよく表される領域(Muffin-Tin(MT)球)と、表せない領域に 分け、価電子軌道をMT球内の原子基底で補強された平面波で表す

WIEN2k

・原子基底の一次結合法

(LCAO: Linear Combination of Atomic Orbitals) 平面波を使わず、原子の波動関数を使う

CRYSTAL, Gaussian, Atomistic Toolkit (VNL), DV-Xα

第一原理計算と密度汎関数理論

バンド計算法全般に関する参考文献

初心者、材料学者向け

バンド構造を用いた材料開発(実践編) 神谷利夫、応用物理学会結晶工学分科会 結晶工学スクールテキスト第14版(2018年)

材料電子論入門第一原理計算の材料科学への応用 田中功、松永克志、大場史康、世古敦人共著、内田老鶴圃 (2017).

量子計算の実際

密度汎関数理論入門 理論とその応用 佐々木泰造、末原茂共訳、吉岡書店 (2014).

量子計算の物理的基礎

固体電子構造論 密度汎関数理論から電子相関まで 藤原毅夫著、内田老鶴圃 (2015)

物質の電子状態

R.M. マーチン著、寺倉清之、寺倉郁子、善甫康成訳、 Springer Japan (2010). 密度汎関数法の基礎

常田貴夫著、講談社 (2012).

特定の計算法・プログラムの参考文献

- 第一原理シミュレータ入門 PHASE & CIAO– 山本 武範、濱田 智之、山崎 隆浩、岡本 政邦 アドバンスソフト発行、2004年初版
- ・固体の中の電子 WIEN2k 入門追加版 和光システム研究所、2006
- (Xα APW) スレーター分子軌道計算
 菅野暁、足立裕彦、塚田捷、東京大学出版会 1982
- •(LAPW) Planewaves, pseudopotentials, and the LAPW Method Ed. David J. Singh, Lars Nordstrom, Springer, 2006
- •(CRYSTAL) Hartree-Fock ab inito treatment of crystalline solids C. Pisani, R. Dovesi, C. Roetti, Springer, 1988
- The LMTO Method H.L. Skriver, Springer, 1984
- •(Tight-Binding) 固体の電子構造と物性 W.A. ハリソン、現代工学社、1980

第一原理計算とは

広義:

経験的パラメータを用いずに、 物理の基礎方程式から 望まれる計算結果を出力する

量子計算:

原子配列のみの入力から、 量子方程式に基づいて 精度の高い全エネルギーを出力する

⇔ 半経験法 (Tight-binding法)

全エネルギーから何が計算できるか

第一原理計算:全エネルギー E を精度良く計算できる

=> 原理的に、すべての物性が計算できる

- ・安定構造: Eが最小になる格子定数、原子座標を求める
- ・電子準位 (バンド構造): $e_i(k) = E(n_{k,i}) E(n_{k,i} 1)$
- ・弾性率テンソル

$$U = U_0 + \frac{1}{2} \sum_{i,j,k,l} C_{ijkl} e_{ij} e_{kl} \qquad \qquad \textcircled{E} e_{ij}$$
$$\sigma_{ij} = \sum_{k,l} C_{ijkl} e_{kl} \qquad \qquad \textcircled{E} e_{ij}$$

・誘電率テンソル

$$U = U_0 + \frac{1}{2} \sum_{i,j} \varepsilon_{ij} E_i E_j$$
$$D_i = \varepsilon_0 + P_i = \sum_j \varepsilon_{ij} E_j$$

歪 *e_{ij}* を与えて *U*(*e_{ij}*) を計算 歪 *e_{ij}* を与えて応力*σ_{ij}* を計算

電場 *E_i* を与えて*U*(*E_i*)を計算

分極 P_i はBerry位相から計算

エネルギー関数 U:

- 0K, 定積:内部エネルギー E (DFTの全エネルギー)
- 0 K, 定圧: エンタルピー *H* = *U* + *PV*
- >0 K, 定積: Helmholzの自由エネルギー

 $F = U + F_{electron} + F_{phonon}$ 電子の状態密度 フォノン状態密度 から計算 から計算

量子計算(第一原理計算)で何ができるか

1. 原子・電子の状態の可視化 (9章)

・電子準位、波動関数、電子分布(電子の伝導路、欠陥)、など

2. 精度の高い全エネルギー計算を行える

- ・安定な構造(構造解析結果の確認、計算モデルの確認)(13,14章,付録4b)
 ・実験で決めるのが難しい構造(アモルファス、混晶、水素)(付録6b)
- ・生成エネルギーなど(12章)
- ・与えられたフェルミ準位で安定な欠陥やドーパントの状態がわかる 想定した欠陥種の範囲内での平衡フェルミ準位がわかる(付録4a)

3. 電子構造の定量的計算

バンド構造 (5章)

- ・直接遷移か間接遷移か、許容遷移か禁制遷移か (6章)
- ・光学スペクトル (屈折率、吸収係数) (11章)
- ・キャリア輸送特性(有効質量,フェルミエネルギー,状態密度)(7,8章)
 電子伝導度、電子比熱、熱電係数
- ・化学結合性状に関する定性的な知見(8章)

共有結合性、投影(部分)状態密度

スピン:スピン配置、スピン配列、自発分極など(付録8)

4. **電子-格子結合系の物性 (付録2f,付録2g)** 弾性率、誘電率 (Bery位相)、圧電定数など フォノン分散、赤外 / ラマンスペクトル

量子理論の基本と定式化のバリエーション

古典論と量子論の違い:

プランク定数 $h = 6.626 \times 10^{-34}$ Js を無視できるか、できないか

共役な物理量 q, p_q の交換関係 $[q, p_q] = qp_q - p_q q = ih/2\pi$ (古典力学、直交座標系では、 $p_x = dx/dt$ 。一般的な導出については解析力学を参照)

(古典力学、直交座標系では、 $p_x = dx/dt$ 。一般的な導出については解析力学を参照) => Heisenbergの不確定性関係が導出される

定式化:どの定式化を使っても良い。問題によって解の容易さに違いがある

- 1. Heisenbergの行列力学: 行列方程式 (参考: 朝永振一郎 量子力学I) 固有値 (固有エネルギー)、固有状態 (線形代数的ベクトル) が得られる。
- 2. 波動力学 (Schrödinger方程式): 微分方程式 古典的なHamiltonianに、物理量の交換関係を導入 (第一量子化)。 固有値 (固有エネルギー)、固有状態 (関数空間のベクトル、場) が得られる。
- 3. 第二量子化 (場の量子論): 非可換代数方程式 場を量子論的な交換関係を満たすように量子化 固有値 (固有エネルギー)、 固有状態 (状態ベクトル $\prod_q \hat{a}_q^\dagger | 0 \rangle$: 真空 $| 0 \rangle$ に生成演算子 \hat{a}_q^\dagger を作用)
- 密度汎関数理論: Hohenberg-Kohnの定理 数学的定理: すべての物理量を電子密度 ρ(r)の汎関数として扱える 一般にSchrödinger方程式類似の一電子微分方程式として扱う (Kohn-Sham方程式)

すべての物性を計算できるプログラムは無い 「第一原理計算」であれば、同様の精度は出るはず => 必要な機能を持つ複数のプログラムを 組み合わせて使えばいい

例:

- 1. 安定構造、電子構造:計算が早いVASP
- 2. 内殻準位、X線吸収:
 - 内殻を計算できる全電子法 Wien2k
- 3. COOP/COHP
- 4.フォノン分散
- 5. ラマン散乱強度
- 6. キャリア輸送特性

- : LOBSTER
- : Phonopy
- : raman-sc
- : BoltzTraP

密度汎関数理論 (Density Function Theory: DFT)

Hohenberg-Kohnの定理

- 1. 外部ポテンシャル $V_{ext}(r)$ 中で相互作用しあう電子ガスについて、 全電子密度 $\rho(r)$ が与えられると、 $V_{ext}(r)$ は一意的に決まる。
- 全エネルギーはρ(r)の汎関数 E[ρ(r)] で与えられ、
 最小のE[ρ(r)] を与える ρ(r) が基底状態の電子密度
- ・簡単に電子相関を取り込める => 多体問題に適している
- 形式的に、「交換相互作用」と「電子相関相互作用」の両方とも、
 全電子密度の汎関数として厳密に扱える
- ただし、汎関数の形を通して近似が入る
- ・実際の電子密度を再現する一電子系を解く問題に還元する

一電子方程式: Kohn-Sham方程式

全エネルギー $E = T_0[\rho] + \int V_{ext}(\mathbf{r})\rho(\mathbf{r})d\mathbf{r} + \frac{1}{2}\int \frac{\rho(\mathbf{r})\rho(\mathbf{r'})}{|\mathbf{r'}-\mathbf{r}|} d\mathbf{r}d\mathbf{r'} + E_{XC}[\rho]$ 交換相互作用 相互作用の 電子のポテンシャル 雷子-雷子 無いときの エネルギー 電子相関相互作用 静雷相互作用 運動エネルギー

変分をとる

$$\rho(\mathbf{r}) = \sum_{i} \phi_{i}^{*}(\mathbf{r})\phi_{i}(\mathbf{r})$$

$$-\frac{h^2}{2m}$$

 $\left(-\frac{\hbar^2}{2m}\nabla^2 + V_{ext}(\rho(\mathbf{r})) + V_{e-e}(\rho(\mathbf{r})) + V_{XC}(\rho(\mathbf{r}))\right)\phi(\mathbf{r}) = \varepsilon\phi(\mathbf{r})$ 自由電子一つの系ではSchrödinger方程式に一致 V_x:別に形を仮定する必要がある:DFTの仮定 $\phi(r), \epsilon$ の物理的意味は?

Schrödinger方程式と密度汎関数理論 Hartree-Fock (HF) 方程式 (一電子Schrödinger方程式) $\left\{-\frac{1}{2}\nabla_{l}^{2} + V_{ext}(\mathbf{r}_{l}) + V_{e-e}(\mathbf{r}_{l}) + V_{Xl}(\mathbf{r}_{l})\right\}\phi_{l}(\mathbf{r}_{l}) = \varepsilon_{l}\phi_{l}(\mathbf{r}_{l})$

Kohn-Sham方程式 (密度汎関数法, DFT: Density Functional Theory)

$$\left\{-\frac{1}{2}\nabla^{2}+V_{ext}(\rho(\mathbf{r}))+V_{e-e}(\rho(\mathbf{r}))+V_{XC}(\rho(\mathbf{r}))\right\}\phi(\mathbf{r})=\varepsilon\phi(\mathbf{r})$$

- ・数式表現は似ている
 - Schrödinger方程式:
 - 1. 古典的なハミルトニアンを量子化
 - 2. 各電子の座標 r, に関する方程式
 - 3. (HF近似) エネルギー固有値 はイオン化ポテンシャル
 - ·密度汎関数法:
 - 1. Hohenberg-Kohn定理(電子密度で系の基底状態が決まる)
 - 2. 空間座標 r (電子密度 $\rho(r)$ の汎関数)だけに依存。
 - 3.エネルギー固有値は軌道の化学ポテンシャル

「固有値」 ε_iの意味: 何の電子準位?

・Hartree-Fock法: Koopmansの定理 電子軌道から電子1個を抜き取るエネルギー $\varepsilon_i = E(n_i) - E(n_i - 1)$ ・イオン化ポテンシャルに対応 原理的には光電子分光の結合エネルギーに対応 実際にはかなり深くなる

・密度汎関数法: Janakの定理

$$\varepsilon_i = \frac{\partial E}{\partial n_i}$$

・化学ポテンシャルに対応
光電子分光の結合エネルギーより浅くなる

Zn基酸化物のXPSとDOS

How to understand band structure

バンド構造の読み方

バンド構造の読み方

バンド構造の読み方

1. 横軸は波数ベクトル k を表す。
 大雑把には、
 kを電子の運動量が進む方向とみなせる。

波数ベクトルとは・・・ Newton力学: $E = \frac{m}{2}v^2 + V = \frac{P^2}{2m} + V$ P → $\hbar k$ 量子力学: $E = \frac{\hbar^2}{2}k^2 + V$

バンド理論 (Blochの定理)

$$\phi_{kl} = \sum_{j} \exp(i\mathbf{k} \cdot \mathbf{r}_{j}) \cdot u_{j}(\mathbf{r} - \mathbf{r}_{j})$$

k: Blochの波数ベクトル
*ħ***k**: 結晶運動量

注意:移動方向(速度)は、m<0の場合は -k方向になる

バンド構造の読み方

対称性の高い逆格子点記号の調べ方 - Crystallographic database -

▼ ℃ 検索... ₽ - 命☆ 德 C http://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-ky-list http://www.cryst.ehu.es/cryst/ The k-vector Types of Space... × ファイル(E) 編集(E) 表示(M) お気に入り(A) ツール(T) ヘルプ(H) × 1000 - 1000 Bilbao Crystallographic Server -> k-vector types and Brillouin zones Help The k-vector types of space group Pm-3n (223) FCT/ZTF bilbao crystallographic server 6,9 (Table for arithmetic crystal class m -3 mP) LIPV FHU Pm-3m-Oh¹ (221) to Pn-3m- Oh⁴(224) Contact us About us Publications How to cite the server Quick Reciprocal-space group (Pm-3m)*, No.221 Space-group symmetry access to some GENPOS Generators and General Positions of Space Groups Brillouin zone tables WYCKPOS Wyckoff P itions of Space Groups crystal HKLCOND on conditions of Space Groups Refle ographic Space k-vector description ITA description MAXSUB imal Subgroups of Space Groups Groups server CDML¹ SERIES Series of Maximal Isomorphic Subgroups of Space Groups Wyckoff P Coordinates Equivalent Sets of Wyckoff Positions WYCKSET Plane I abel Coefficients Bilbao Groups Crystallographic NORMA Normalizers of Space Groups TED GM 0.0.0 0.0.0 m Server KVEC The k-vector types and Brillouin zones of Space Groups in forthcoming R 1/2.1/2.1/2 1 b m-3 1/2.1/2.1/2 Layer schools and Grouns 3 Μ 1/2.1/2.0 с 4/mm 1/2.1/2.0 workshop × 0,1/2,0 Image: State of the state of ▼ C 検索。 ρ- 偷☆戀 🙂 News: DT 0.u.0 6 🧲 @ http:// /st.ehu.es/cgi-bin/cryst/programs/nph-kv-list?gnum=223&flg=fm3gmpi 👻 👌 検索. Q -合☆ 袋 🙂 The k-vector types and Brill... × New Artic Acta Crys ファイル(E) 編集(E) 表示(V) お気に入り(A) ツール(T) ヘルプ(H) Т 1/2,1/2,u 6 @ The k-vector Types of Space... × 教文法 👻 単道沢 8 ファイル(E) 編集(E) 表示(V) 2 気に入り(A) ツール(E) ヘルプ(H) 05/2019: Ga LD × 電文後 👻 劇選 0.0.0 al. "Automati Bilbao Crystallographic Server → The k-vector types and Brillouin zones of the space groups Help calculation or symmetry-ad u,1/2,0 1: Bilbao Crystallographic Server → k-vector types and Brillouin zones Help Ζ tensors in ma SM u,u,0 12 and non-mag u,1/2.u 1; The k-vector types of space group Pm-3n (223) S materials: a The k-vector types and Brillouin zones of the space groups tool of the Bi Crystallograp Server." Acta А u.v.0 24 Brillouin zone (2019) A75. u.1/2.v 24 В 447 (Diagram for arithmetic crystal class m -3 mP) u,u,v[GMMR] ex 24 C llouin-zone databases of space New Artic Please, enter the sequential number of the space group as given u.v.u/GMXR1 ex 2/ .1 Nature 03/ in International Tables for Crystallography, Vol. A, or choose it: Pm -3 m-Oh¹ (221) to Pn -3 m-Oh⁴ (224) Vergniory et The Brillouin-zone database offers k-vector tables and figures which form Reciprocal-space group (Pm -3 m)*, No. 221 the background of a classification of the Comparative listing of k-vector types irreducible representations of all 230 The table with the k vectors zed listing of k-vector types using ITA description space groups. k-vector identification The space groups are specified by their sequential number as given in the X_{3} International Tables for Crystallography, Vol. A. You can give this number, if you know it, or you can choose it from the table with the space group numbers and symbols if you click on choose it To get the k-vector types described in three different basis (primitive. conventional and ITA) click on the bottom Comparative listing of k-vector types To get the k-vector types using a minimal reciprocal wyckoff position click $\mathbf{X} k_{y}$ on the bottom Optimized listing of k-vector types using ITA description If you are using this progam in the preparation of a paper, please cite it in the following form: M. I. Aroyo, D. Orobengoa, G. de la Flor, E.S. sci J M Perez-Mato and H

Si 間接遷移: 最小ギャップでの 光吸収係数が小さい

^{p.141}図6-1(B) バンド構造の読み方: 半導体

Si 間接遷移: 吸収係数小さい (×厚い光発電層が必要) 再結合も遅い (O太陽電池)

非輻射再結合が優勢になりやすい

GaAs 直接遷移型:吸収係数が大きい(O太陽電池向き)

GaAs 直接遷移型: 再結合は速い 輻射再結合が優勢になりやすい (OLED) 伝導帯の谷構造では間接遷移 (〇太陽電池) 6 4 2 Energy (eV) E_F ~ps 0 -2 -6

L

Г

W

X

WK

First-principles calculation: Effective mass

第一原理計算:有効質量

有効媒質近似,有効質量近似

半導体は原子がとびとびに並んでいるが・・・・ バンド理論、Blochの定理により、 バンド E(k) にある電子には周期的に並んだ原子による 散乱は受けない

- 誘電率εの均質連続媒質と近似できる
- ・電子は有効質量 \mathbf{m}_{e}^{*} と電荷 -|e|を持つ粒子と近似できる

ε、m_e^{*}、m_h^{*}がわかると、
いろいろな物性値を計算できる

有効質量からどこまでわかるか (自由電子近似)

移動度、伝導度
$$\mu = \frac{e\tau}{m_e^*}$$
 $\sigma = eN_{free}\mu$

状態密度 $M_{\rm C}$ は等価なLUMOのk点の数。

$$N(E) = M_C \frac{\sqrt{2}}{\pi^2} \frac{\sqrt{E - E_C}}{\hbar^3} m_{de}^{3/2}$$

バースタイン・モスシフト
(縮退半導体のE_F) $\Delta E_g^{BM} = \frac{\hbar^2}{m_{de}} \left(\frac{3N_e}{16\sqrt{2}\pi}\right)^{2/3}$

有効状態密度 スピン以外の縮退のない等方的なsバンドでは、 状態密度有効質量m_d。はキャリア有効質量m_e*に等しい

$$N_{C} = 2 \left(\frac{2\pi m_{de} k_{B} T}{h^{2}} \right)^{3/2} M_{C}$$
熱速度
$$\frac{1}{2} m_{e}^{*} v_{th}^{2} = \frac{3}{2} k_{B} T \qquad v_{th} = \sqrt{3k_{B} T / m_{e}^{*}}$$
フェルミ速度
$$\frac{1}{2} m_{e}^{*} v_{F}^{2} = E_{F} - E_{C} \qquad v_{F} = \sqrt{2(E_{F} - E_{C}) / m_{e}^{*}}$$

熱速度

k·p摂動法

$$m_e^* = (1 + 2P^2 / m_e E_g)^{-1} m_e$$

電子 縦質量 橫質量 状態密度 $m_{\rm de}^{*} = 0.33$ $m_{\rm le}^{*} = 0.98$ $m_{\rm te}^{*} = 0.19$ 正孔 重い正孔 軽い正孔 $m_{\rm hh}^{*} = 0.49$ $m_{\rm lh}^{*} = 0.16$ SO 分裂バンド 状態密度 $m_{\rm soh}^{*} = 0.29$ $m_{\rm dh}^{*} = 0.55$

計算值
電子:
$$m_{le}^* = 0.96m_e, m_{te}^* = 0.09m_e$$

正孔: h 0.19m_e(等方的) hh 0.83m_e(<110>) 0.26m_e(<100>) 分裂バンド (split off hole band) 0.14m_e(<110>) 0.22m_e(<100>)

フェルミ面がふくらんでいる => 同じ <u>E = ħk²/2m</u>eになる k が大きい => 有効質量が大きい

First-principles calculation: Bandgap problem and functional

第一原理計算: バンドギャップ問題と汎関数

バンドギャップの成因

- 1. 共有結合(等極結合)Siなど 結合、反結合軌道のエネルギー分裂
- 2. イオン結合(異極結合)酸化物など イオンのエネルギー準位の違いが大きく影響 (共有結合性バンドギャップ+イオン結合性バンドギャップ)

波動関数 (電子密度)

VASP,PBE96

バンドギャップの成因

- 1. 共有結合(等極結合)Siなど 結合、反結合軌道のエネルギー分裂
- 2. イオン結合(異極結合)酸化物など イオンのエネルギー準位の違いが大きく影響 (共有結合性バンドギャップ+イオン結合性バンドギャップ)
- BZ境界での干渉: Bragg反射 (ほぼ)自由な電子近似ででてくる広義のバンドギャップ 「パイエルス転移」など
- 強電子相関系材料
 DFTなどの一電子近似では再現できないバンドギャップ。 d 電子、f 電子系で重要。
 LDA/GGA+U, GW近似などの「beyond DFT」

汎関数: 交換汎関数と相関汎関数

密度汎関数理論:

Kohn-Sham方程式 (密度汎関数法, DFT: Density Functional Theory)

$$\left\{-\frac{1}{2}\nabla^{2} + V_{ext}(\rho(\mathbf{r})) + V_{e-e}(\rho(\mathbf{r})) + \frac{V_{XC}(\rho(\mathbf{r}))}{2}\right\}\phi(\mathbf{r}) = \varepsilon\phi(\mathbf{r})$$

V_{XC}の形がわからない
=> いろいろな近似でいろいろな V_{XC} が提案されている

汎関数: 交換汎関数と相関汎関数

L(S)DA: Local (Spin) Density Approximation 局所密度近似

$$V_{xc} = -3\alpha ((3/8\pi)\rho(\mathbf{r}))^{\frac{1}{3}}$$
局所: 一点 r だけで決まる

非局所: r 以外の情報も考慮する => 微分で取り入れる GGA: Generalized Gradient Approximation 一般化密度勾配近似

$$x_{\sigma} = \left| \nabla \rho_{\sigma} \right| / \rho_{\sigma}^{\frac{4}{3}} \qquad E_{XC} = E_{XC}^{LSDA} - b \sum_{\sigma} \int \rho_{\sigma}^{\frac{4}{3}} \frac{x_{\sigma}^{2}}{1 + 6bx_{\sigma} \sinh^{-1} x_{\sigma}} dv + E_{X}^{NL}$$

Exact exchange: Hartree-Fock交換相互作用

LDA/LSDA:

CA (Ceperley-Alder)/PZ (Perdew-Zunger) [Perdew and Zunger, Phys. Rev. B 23 (1981) 5048]

PW92 (Perdew-Wang 92) [J.P. Perdew and Y. Wang, Phys. Rev. B **45** (1992) 13244]

GGA:

Becke88, PW91, PBE (PBE96) revPBE (Revised PBE) [Y. Zhang and W. Yang, Phys. Rev. Lett. 80 (1998) 890] **RPBE** (Revised PBE) [B. Hammer, L. B. Hansen, and J. K. Nørskov, Phys. Rev. B 59 (1999) 7413] **PBEsol** (PBE for solids) [J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou and K. Burke, Phys. Rev. Lett. 100 (2008) 136406]

WC (Wu-Cohen modification of PBE) [Z. Wu and R.E. Cohen, Phys. Rev. B **73** (2006) 235116]

バンドギャップ問題

バンドギャップ問題: HF近似とDFT

よりもっともらしい バンドギャップの計算 – beyond DFT –

(i) 配置間相互作用 (Configuration Interaction: CI)
 分子軌道法 (Gaussianなど) で広く使われている
 バンド計算で実行するのは難しい

バンド計算の場合

(i) 自己相互作用補正 (Self-Interaction Correction: SIC)

(ii) EE項に遮蔽パラメータを入れる方法

Screened Exchange: sX近似

(iii) HF近似とDFTが Egの値を逆方向に間違える

- => これらを適当な割合で混合した混合汎関数 (Hybrid DFT)
- (a) 実測のバンドギャップに合うようにEE項と密度汎関数を 適当な比で混合したもの。

B3PW91, B3LYPなど。混合係数が経験的に決められている。

(b) (a)に似ているが、係数が理論的に決定されている。

PBE0 や、その遮蔽版 (HSE)

(iv) **GW近似** (準粒子近似)

混合汎関数: PBE0, HSE

PBE0混合汎関数

$$E_{xc}^{SR,HFPBE0} = aE_x^{HF,SR} + (1-a)E_x^{PBE} + E_c^{PBE}$$

混合パラメータ $a = 1/4$

HSE混合汎関数

$$E_{xc}^{\omega PBEh} = aE_{x}^{HF,SR}(\omega) + (1-a)E_{x}^{PBE,SR}(\omega) + aE_{x}^{PBE,LR}(\omega) + E_{c}^{PBE}$$

混合パラメータ $a = 1/4$
遮蔽パラメータ $\omega \to 0$: **PBE0** $\omega \to \infty$: **PBE96 (GGA)**
(バンドギャップが合うように調節されたりすることもある)
HSE03 : $\omega = 0.15$
HSE06 (HSE03のERRATA): $\omega = 0.15/2^{1/2} = 0.106$ (HF part)
 $\omega = 0.15 \times 2^{1/3} = 0.189$ (PBE part)

John P. Perdew, Matthias Ernzerhof and Kieron Burke J. Chem. Phys. **105** (1996) 9982 Jochen Heyd, Gustavo E. Scuseria, Matthias Ernzerhof J. Chem. Phys **118** (2003) 8207; **124** (2006) 219906

立方晶SrGeO₃のバンド構造

バンドギャップが負になってしまう

実測値 E_g~2.7 eV

バンドギャップの成因

- 1. 共有結合(等極結合)Siなど 結合、反結合軌道のエネルギー分裂
- 2. イオン結合(異極結合)酸化物など イオンのエネルギー準位の違いが大きく影響 (共有結合性バンドギャップ+イオン結合性バンドギャップ)
- **3. BZ境界での干渉**: Bragg反射 (ほぼ)自由な電子近似ででてくる広義のバンドギャップ 「パイエルス転移」など
- 強電子相関系材料 DFTなどの一電子近似では再現できないバンドギャップ。 d 電子、f 電子系で重要。 LDA/GGA+U, GW近似などの「beyond DFT」。

<u>汎関数</u>, Uの効果: ZnO

VASP

Self-interaction correction to the local-density approximation in the calculation of the energy band gaps ...

N. Hamada and S. Ohnishi, Phys. Rev. B 34, 9042 (1986)

LDAの誤差は 伝導帯よりも 価電子帯の方が大きい

FIG. 1. Energy band structures of Si along high symmetry lines. Solid curves represent the SIC-LDA calculation, and dashed curves the LDA. Fundamental energy band gap is given by the difference between the conduction band minimum near Xpoint and the valence band top at Γ point. Note that the energy gap in SIC-LDA is about two times of that in LDA.

半導体のバンドギャップの計算値

大橋直樹監修、バンドギャップエンジニアリング – 高効率デバイスへの挑戦 – 大場史康、第4章 半導体の物性シミュレーション(シーエムシー出版)

文献61 M. Marsman et al, J. Phys.: Condens. Matter, 20, 064201 (2008)

図1 様々な近似により計算された半導体および絶縁体のバンドギャップ²¹⁾。実験値との対応 を明確にするため、横軸を実験値、縦軸を計算値としてプロットしている。

半経験法(ATK-SE)による 高精度バンドギャップ計算

	ATK-SE [eV]	ATK-DFT [eV]	Experiment [eV]
InAs	0.28	0.80	0.36
Si	1.22	0.63	1.11
InP	1.35	1.78	1.35
GaAs	1.2	0.56	1.43
AlAs	2.27	1.39	2.16
GaP	2.47	1.63	2.26
AIP	2.61	1.56	2.45
SiC	2.15	1.36	2.36
Diamond	5.84	4.29	5.5

CYBERNET

図:バンドギャップの計算値と実験値の比較。様々な物質に対して、ATK-SEでは 実験値と同等のバンドギャップが得られる。

Puantum Wise

Band theory from free electron (plain wave basis set: PW)

自由電子 (平面波基底関数) からの バンド理論 光学スペクトル (誘電関数ε*, 吸収係数α)

$$\mathcal{H} = \mathcal{H}_{0} - er \cdot E$$

$$\varepsilon_{1}(\omega) = 1 + 4\pi \sum_{j} \frac{e^{2} |T_{0j}|^{2}}{\hbar} \frac{2\omega_{j}}{\omega_{j}^{2} - \omega^{2}}$$

$$T_{ij} = \langle \Psi_{i} | \mathbf{r} | \Psi_{j} \rangle = \int \Psi_{i}^{*} \mathbf{r} \Psi_{j} d\mathbf{r}$$

Kramers-Kronig**変換**

$$\varepsilon_{2}(\omega) = \frac{4\pi Ne^{2}}{m} \sum_{j} f_{j} \pi \delta(\omega^{2} - \omega_{j}^{2})$$

$$=\frac{4\pi Ne^{2}}{m}\sum_{j}f_{j}\frac{\pi}{2\omega}\left[\delta\left(\omega-\omega_{j}\right)+\delta\left(\omega+\omega_{j}\right)\right]$$

$$n(\omega) - i\kappa(\omega) = \sqrt{\varepsilon_1(\omega) - i\varepsilon_1(\omega)}$$

$$\alpha(\omega) = \frac{4\pi}{\lambda} \kappa(\omega)$$

光学スペクトル: LaCuOSe

WIEN2k+OPTICS

In_2O_3 の直接/関接バンドギャップ

Nature of the band gap of In₂O₃ revealed by first-principles calculations and x-ray spectroscopy Aron Walsh, Juarez L.D.F.Da Silva, Su-Huai Wei, C. Korber, A. Klein, L.F.J. Piper, Alex DeMasi, Kevin E. Smith, G. Panaccione, P. Torelli, D.J. Payne, A. Bourlange, and R.G. Egdell Phys. Rev. Lett. 100 (2008) 167402

立方晶SrGeO₃のバンド構造

バンドギャップが負になってしまう

実測値 E_g~2.7 eV

Ge酸化物の光学スペクトル

実測

