第一原理計算と熱力学、半導体統計

神谷利夫

東京工業大学 科学技術創成研究院 フロンティア材料研究所

第一原理計算と密度汎関数理論

解析力学: ハミルトン方程式と交換関係 ハミルトニアン $H(q, p, t) = \sum_{r} p_r \dot{q}_r - L(q, p, t)$ $H(r, p, t) = \sum_{r} \frac{1}{2m_i} p_i^2 + V(r, p)$ デカルト座標 ハミルトンの運動方程式 $\frac{\partial q_r}{\partial t} = \frac{\partial H}{\partial p_r}, \frac{\partial p_r}{\partial t} = -\frac{\partial H}{\partial q_r}$ ポアッソン括弧 (古典的な交換関係) $\{A,B\} = \sum_{i} \left(\frac{\partial A}{\partial p_{i}} \frac{\partial B}{\partial q_{i}} - \frac{\partial B}{\partial p_{i}} \frac{\partial A}{\partial q_{i}} \right)$ A, B: 物理量 運動方程式 $\dot{A} = \{H, A\} + \frac{\partial A}{\partial t}$ Aが時間に依存しなければ $\dot{A} = \{H, A\}$

量子化: Heisenbergの不確定性原理

共役な物理量の交換関係から自然に導出される: $qp_q - p_q q = [q, p_q]i\hbar$ $\hat{x} = x, \quad \hat{p}_x = \frac{\hbar}{i} \frac{\partial}{\partial x}$ $\hat{x} = i\hbar \frac{\partial}{\partial p_x}, \hat{p}_x = p_x$ $\hat{x} = \hat{p}_x \hat{x} = i\hbar$ $\Delta x \cdot \Delta p_x \sim h$

Schrödinger方程式

古典的なハミルトニアン (物理量は C数 classical) $H(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{p}_2, \mathbf{p}_1, \dots, t) = \sum_r \frac{1}{2m_i} |\mathbf{p}_i|^2 + V(\mathbf{r}_1, \mathbf{r}_2, \dots, \mathbf{p}_2, \mathbf{p}_1, \dots)$

ハミルトニアン中の物理変数 (x, pなど) を演算子 (Q数) とみなし、 量子交換関係を満たすように置き換える \hbar ∂

 $H\Psi(\mathbf{r}_{1},\mathbf{r}_{2},\cdots) = E\Psi(\mathbf{r}_{1},\mathbf{r}_{2},\cdots) \quad \text{Schrödinger} \\ \left\{-\frac{1}{2}\sum_{l}\nabla_{l}^{2} + V(\mathbf{r}_{1},\mathbf{r}_{2},\cdots)\right\}\Psi(\mathbf{r}_{1},\mathbf{r}_{2},\cdots) = E\Psi(\mathbf{r}_{1},\mathbf{r}_{2},\cdots)$

Eは H演算子の固有値:全エネルギー Ψ: |Ψ|² が電子密度分布

- ・多変数(粒子数×6)の連立偏微分方程式
- 一般的には、解析的に解けない

物理的意味は?

原子単位 (a.u.): 方程式の規格化

$$\begin{bmatrix} -\frac{\hbar^2}{2m_e} \nabla^2 - \frac{e^2}{4\pi\varepsilon_0} \frac{Z}{r} \end{bmatrix} \psi(\mathbf{r}) = E\psi(\mathbf{r}) \qquad r' = ar \qquad E' = bE$$

$$\begin{bmatrix} -\frac{\hbar^2}{2m_e a^2} \nabla'^2 - \frac{e^2}{4\pi\varepsilon_0 a} \frac{Z}{r'} \end{bmatrix} \psi(a\mathbf{r}') = bE'\psi(a\mathbf{r}')$$

$$\left[-\frac{1}{2}\nabla^2 - \frac{Z}{r}\right]\psi(\mathbf{r}) = E\psi(\mathbf{r})$$

$$a = \frac{4\pi\varepsilon_0\hbar^2}{m_e e^2} = 5.2918 \times 10^{-11} \text{m}$$
$$b = \frac{m_e e^4}{2(4\pi\varepsilon_0)^2\hbar^2} = 13.6 \text{ eV}$$

$$\begin{bmatrix} -\nabla^2 - 2\frac{Z}{r} \end{bmatrix} \psi(\mathbf{r}) = E\psi(\mathbf{r})$$
$$b = \frac{m_e e^4}{(4\pi\varepsilon_0)^2 \hbar^2} = 27.2 \,\mathrm{eV}$$

共通単位: a.u.

単位: ハートリー (Hartree)

第一原理計算とは

広義:

経験的パラメータを用いずに、 物理の基礎方程式から 望まれる計算結果を出力する

量子計算:

原子配列のみの入力から、 量子方程式に基づいて 精度の高い全エネルギーを出力する

⇔ 半経験法 (Tight-binding法)

全エネルギーから何が計算できるか

第一原理計算:全エネルギーEを精度良く計算できる

=> 原理的に、すべての物性が計算できる

- ・安定構造: E が最小になる格子定数、原子座標を求める
- ・電子準位 (バンド構造): $e_i(k) = E(n_{k,i}) E(n_{k,i} 1)$ (実際には一電子方程式の解)
- ・弾性率テンソル

 $U = U_0 + \frac{1}{2} \sum_{i,j,k,l} C_{ijkl} e_{ij} e_{kl}$ $\sigma_{ij} = \sum_{k,l} C_{ijkl} e_{kl}$

・誘電率テンソル

$$U = U_0 + \frac{1}{2} \sum_{i,j} \varepsilon_{ij} E_i E_j$$
$$D_i = \varepsilon_0 + P_i = \sum_j \varepsilon_{ij} E_j$$

歪 e_{ii} を与えて U(e_{ii}) を計算

歪 *e_{ii}* を与えて応力*σ_{ii}* を計算

電場 *E_i* を与えて*U*(*E_i*)を計算

分極 P_i はBerry 位相から計算

エネルギー関数 U:

- 0K, 定積: 内部エネルギー E (DFTの全エネルギー)
- 0 K, 定圧: エンタルピー H = U + PV

>0 K, 定積: Helmholzの自由エネルギー

 $F = U + F_{\text{electron}} + F_{\text{phonon}}$ 電子の状態密度
フォノン状態密度 から計算 から計算

原子基底関数からのバンド理論 Linear Combination of Atomic Orbitals: LCAO

ー次結合と変分法: Roothaan-Hall方程式

リッツの変分原理:

任意の波動関数 Ψ に対するハミルトニアン H の期待値 <H> は 基底状態のエネルギー固有値 E_0 よりも大きいか等しい

 $< H >= \langle \psi | H | \psi \rangle / \langle \psi | \psi \rangle \ge E_0$

正確な波動関数¥を基底関数 unの一次結合で近似する

$$\Psi = \sum_{n=0}^{\infty} C_n u_n$$

変分原理により、エネルギーの期待値を係数 C_n あるいは C_m *で最小化 $< E >= \frac{\sum_{m=n}^{\infty} C_m^* C_n \langle u_m | H | u_n \rangle}{\sum_{n=n}^{\infty} C_n^* C_n \langle u_m | u_n \rangle}$ $\sum_{m=n=1}^{\infty} C_m \langle u_n | H | u_m \rangle - E \sum_{m=n=1}^{\infty} C_m \langle u_n | u_m \rangle = 0$

量子計算の方程式は多くの場合、固有値問題に帰着する

Roothaan-Hall方程式

$$\sum_{m} C_{m} \langle u_{n} | H | u_{m} \rangle - E \sum_{m} C_{m} \langle u_{n} | u_{m} \rangle = 0$$
HC = ESC

$$\begin{vmatrix} H_{11} - ES_{11} & H_{12} - ES_{12} & \cdots & H_{1n} - ES_{1n} \\ H_{21} - ES_{21} & H_{22} - ES_{ss} & H_{2n} - ES_{2n} \\ \vdots & \ddots & \vdots \\ H_{n1} - ES_{n1} & H_{n2} - ES_{n2} & \cdots & H_{nn} - ES_{nn} \end{vmatrix} = 0$$

共鳴積分 (Fock matrix)
移送積分 (transfer matrix) $H_{nm} = \langle u_n | H | u_m \rangle$
重なり積分(overlap integral) $S_{nm} = \langle u_n | u_m \rangle$

 $\varepsilon = \varepsilon_{1s} \pm h_{12}$

 $\phi_{\pm} = \frac{1}{\sqrt{2}} (\varphi_1 \pm \varphi_2)$

水素分子H、

 $c_{i}^{(l)} = \exp(ik_{l}x_{j})$ $k_{l} = \frac{2\pi}{Na}l \quad l \downarrow 0 \sim 20$ 整数, aは原子間距離 $E(k_{l}) = \varepsilon_{1s} + 2h_{12}\cos(k_{l}a)$

1種類の波動関数が周期的に 並んでいる場合の解

環状H₃分子の結果は、N個の水素原子が環状に繋がっているH_N分子にそのまま拡張できる。

$$\begin{pmatrix} \varepsilon_{1s} & h_{12} & 0 & 0 & h_{12} \\ h_{12} & \varepsilon_{1s} & h_{12} & 0 & 0 \\ 0 & h_{12} & \varepsilon_{1s} & \ddots & \vdots \\ 0 & 0 & \ddots & \ddots & h_{12} \\ h_{12} & 0 & \cdots & h_{12} & \varepsilon_{1s} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_N \end{pmatrix} = \varepsilon \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_N \end{pmatrix}$$

$$\phi_{kl} = \sum_{j} \varphi_{j} \exp(ik_{l}x_{j})$$
$$E(k_{l}) = \varepsilon_{1s} + 2h_{12}\cos(k_{l}a)$$

ベンゼン(C₆H₆)の波動関数とBlochの定理

Blochの定理

Blochの波数ベクトル k

ー次元水素結晶: 波数ベクトルと結晶軌道

a=0.74, b=c=14.8 Å

<u>1/2a=0.676 Å⁻¹</u>

Blochのkベクトルの意味

Г: *k* = (0, 0, 0) exp(i*k*·*r*) = 1: どの単位格子の位相も同じ

Y: k = (0, 1/2, 0)

 $exp(ik r) = exp[i\pi(n_x)]: n_y$ が奇数の時反転

- $X: k = (\pi / a, 0, 0)$ [波数単位]
 - (π, 0, 0) [位相単位]

(1/2,0,0) [逆格子定数単位 (2π/a, 2π/b, 2π/c)]

 $\exp(i\mathbf{k}\cdot\mathbf{r}) = \exp[i\pi(n_x)]: n_x$ が奇数の時反転

$$M: k = (1/2, 1/2, 0)$$

exp(ik:r) = exp[

 $\exp(i\mathbf{k}\cdot\mathbf{r}) = \exp[i\pi(n_x + n_y)]: n_x + n_y$ が奇数の時反転

Blochのkベクトルの意味

 $\Delta_x : k = (1/4, 0, 0)$ [in $(2\pi/a, 2\pi/b, 2\pi/c)$] exp $(ik \cdot r) = exp[i\pi(n_x/2)]$: a方向に4周期で位相が戻る

 Δ_x : k = (1/3, 0, 0)exp(ikr) = exp[i $\pi(n_x/3)$]: a方向に3周期で位相が戻る

杉山、結晶工学スクールテキスト p. 110

横軸は波数ベクトル k を表す。
 大雑把には、
 kを電子の運動量が進む方向とみなせる。

波数ベクトルとは・・・ Newton力学: $E = \frac{m}{2}v^2 + V = \frac{P^2}{2m} + V$ P → $\hbar k$ 量子力学: $E = \frac{\hbar^2}{2}k^2 + V$

バンド理論 (Blochの定理)

$$\phi_{kl} = \sum_{j} \exp(i\mathbf{k} \cdot \mathbf{r}_{j}) \cdot u_{j}(\mathbf{r} - \mathbf{r}_{j})$$

k: Blochの波数ベクトル
*ħ***k**: 結晶運動量

注意:移動方向(速度)は、m<0の場合は -k方向になる

対称性の高い逆格子点記号の調べ方 - Crystallographic database -

http://www.cryst.ehu.es/cryst/

🚈 Crystallographic Programs - Microsoft Inter	met Explorer		🚰 The k-vector Types of Space Groups - Microsoft Internet Explorer	
77イル(ビ) 編集(ビ) 表示(公) お気に入り(A) ツール(T) ヘルブ(出)			ファイル(E) 編集(E) 表示(V) お気に入り(A) ツール(D) ヘルプ(H)	× P
			← 戻る - → - ② 図 凸 ③検索 函は気に入り ③メディア ③ 昆・ ● 区 - 目 回	
アドレス型 臓 http://www.crystehues/cryst/			アドレス(D) 🍙 http://www.cryst.ehu.es/cgi-bin/cryst/programs/nph-kv-list?gnum=1298fig=f4ommmp	▼ ◆ 移動 <
LAMA <u>Materials Laboratory</u> at UPV/EHU		ic Server	Bilbao Crystallographic Server → k vectors types The k-vector Types of Group 129 [P 4/n m m]	
More	Simple retrieval tools:	Group-Subgroup Relations	Brillouin zone	
Contact us	Table of space group symbols	SUPERGROUPS	(Diagram for arithmetic crystal class 4/mmmP)	
About us Publications	GENPOS Generators and General Positions of Space Groups	Determination of Supergroups Of Space Groups (includes MINSUP)	(P4/mmm-D _{4h} ¹ (123) to P4 ₂ /ncm-D _{4h} ¹⁶ (138))	
Forums <u>News</u>	<u>WYCKPOS Wyckoff Positions of Space</u> Groups	WYCKSPLIT Wyckoff Positions Splitting Program	Reciprocal-space group (P4/mmm)*, No. 123	
New programs:	MAXSUB Maximal Subgroups of Space Group	SUBGROUPGRAPH Constructing the Lattice of	The table with the K vectors	
 <u>SYMMODES</u> - A software package for a group theoretical analysis of structural 	 NORMALIZER Normalizers of Space Groups 	Maximal Subgroups		
phase transitions (developed in colaboration with H.Stokes and D.Hatch).	Space Group Representations:	Solid State Applications • SAM Infrared and Raman Modes		
 <u>NORMALIZER</u> - Normalizers of Space Groups 	KVEC The k-vector Types of Space Groups POINT Point Group Tables	• NEUTRON Neutron Scattering Selection Rules	k _x M y	
Plain Text Versions of the Programs or "How to use the result of the programs without	REPRES Space Group Representations COREL Correlations Between the Representations	PSEUDO – Pseudosymmetry Search in a Structure SYMMODES – Primary and Secondary Modes for a Lattice		
a web browser" Results in XML form		of Maximal Subgroups New	The PostScript file with the Brillouin zone.	
Robots Beware: Indiscriminate automated	Beware: minate automated ads from this site are mitted! ICSDB Incommensurate Structures Database		Bilbao Crystallographic Server For comme http://www.cryst.elux.es 0	nts, please mail to <u>ryst@wm.lc.ehu.es</u>
downloads from this site are not permitted!				
Bilhan Crystallographic Server		For comments, please mail to		-1
http://www.cryst.ehu.es/cryst/get_kvec.htm	nl	1 01 continents, preuss main to		<u>「</u> 」 インターネット
		, , , , ,		11

状態密度の読み方 Density Of States: DOS

結合状態の見方

鉄系超伝導体 LaFeOP の投影状態密度

半導体統計 Semiconductor statistics

分布関数から物理量を求める手順

1. 全粒子数 => μ を決定 $N = \sum_{i} f(E_i) = \int f(\mathbf{r}, \mathbf{p}) d\mathbf{r} d\mathbf{p} = \int D(E) f(E) dE$ 2. 全エネルギーを計算

 $E = \sum_{i} E_{i} f(E_{i}) = \int E(\mathbf{r}, \mathbf{p}) \cdot f(\mathbf{r}, \mathbf{p}) d\mathbf{r} d\mathbf{p} = \int ED(E) f(E) dE$

3a. 統計平均として物理量 Pを導出 $P = \sum_{i} P_{i} f(E_{i}) = \int P(\mathbf{r}, \mathbf{p}) \cdot f(\mathbf{r}, \mathbf{p}) d\mathbf{r} d\mathbf{p} = \int P(E) D(E) f(E) dE$

3b. 分配関数 (状態和) の微分として物理量を導出

平均エネルギー $\frac{d}{d(1/k_BT)} \ln Z = -\sum \frac{E_i \exp\left(-\frac{E_i}{k_BT}\right)}{Z} = -\langle E \rangle \quad (4.34)$ (平均) 粒子数 $\langle N \rangle$ $\frac{d}{dE_i} \ln Z = -\frac{1}{k_BT} \sum \exp\left(-E_i/k_BT\right)/Z = -\frac{1}{k_BT} \langle N \rangle$ (平均) 分極 $\langle \mu \rangle$ $\frac{d}{dB} \ln Z = \frac{1}{k_BT} \sum \mu_i \exp\left(+\mu_i B/k_BT\right)/Z = \frac{1}{k_BT} \langle \mu \rangle$ 3c. 自由エネルギーの微分として物理量を導出 Helmholtzエネルギー $F = -Nk_BT \ln Z$ (4.41) 体積弾性率 B_V : $F = F_0 + (1/2)B_V (V/V_0)^2$

統計分布関数とµの意味

Maxwellの速度分布関数: 古典力学、理想気体、空間の等方性から導出

$$f(\boldsymbol{v})d\boldsymbol{r}d\boldsymbol{v} = \rho \left(\frac{m}{2\pi k_B T}\right)^{3/2} \exp\left(-\frac{m v^2}{2k_B T}\right) d\boldsymbol{r}d\boldsymbol{v}$$
(3.29)

Maxwell-Boltzmann分布: 等重率の原理、最大確率の分布

$$f(E) = \mathbf{Z}^{-1} \exp\left(-\frac{E}{k_B T}\right) = \exp\left(-[E - \boldsymbol{\mu}]/k_B T\right)$$
(4.29)

(大)正準分布: 一般化された統計分布、すべての基本、M-B分布と同じ形 Fermi-Dirac分布: スピンが半整数(波動関数が粒子の交換で反対称)の粒子 (電子) $f(E) = \frac{1}{\exp[(E - \mu)/k_BT] + 1}$ (8.5)

Bose-Einstein分布: スピンが整数(波動関数が粒子の交換で対称)の粒子 $f(E) = \frac{1}{\exp[(E - \mu)/k_BT] - 1}$ (7.20) (⁴He, スピンのない原子核) Planck分布: スピンが整数、波動関数が対称の粒子 で、粒子数が保存されない

$$f(E) = \frac{1}{\exp[E/k_B T] - 1}$$
 (7.21) (光子、フォノン)

 μ : 化学ポテンシャル (電子を扱う場合は、フェルミエネルギー $E_{\rm F}$) 全粒子数 N の条件から決められる $N = \sum_{i} f(E_i) = \int D(E)f(E)dE$
なぜ分配関数が便利なのか

分配関数
$$Z = \sum_{i} \exp(-e_i / k_B T)$$
$$d(\ln Z) = -\frac{\sum_{i} e_i \exp(-e_i / k_B T)}{\sum_{i} \exp(-e_i / k_B T)} d\left(\frac{1}{k_B T}\right) = -\frac{E}{N} d\left(\frac{1}{k_B T}\right)$$

Helmholtzエネルギー
$$F = -Nk_BT \ln Z$$

平均エネルギー $\langle E \rangle = -N \frac{d \ln Z}{d(1/k_BT)}$
(平均) 粒子数 $\langle N \rangle$ $\frac{d \ln Z}{de_i} = -\frac{1}{k_BT} \sum_{i} \exp(-e_i/k_BT)/Z = -\frac{1}{k_BT} \langle N \rangle$

大分配関数
$$Z_G = \sum_{\{ni\},i} \lambda^{n_i} \exp(-\beta E_{N,i})$$

 $\lambda = e^{\beta \mu}$
グランドポテンシャル (熱力学ポテンシャル)

 $\Omega = -NkBT \ln Z_G$

有限温度のFermi-Dirac分布関数の形

 $f(E,T) => 1 \qquad (E - E_{\rm F} << k_{\rm B}T)$ $f(E,T) = 1/2 \qquad (E = E_{\rm F})$ $f(E,T) = \exp[(E_F - E)/k_BT] => 0 \quad (E - E_{\rm F} >> k_{\rm B}T)$

(E – E_F)/k_BT が大きい高温ではBoltzmann分布と同じ振る舞いをする「非縮退電子ガス」
 ⇒「統計的に縮退した電子ガス」

自由電子近似:状態密度とE_F

金属の E_F の計算: プログラム

http://conf.msl.titech.ac.jp/Lecture/StatisticsC/index.html http://conf.msl.titech.ac.jp/Lecture/StatisticsC/ef-t-metal.html http://conf.msl.titech.ac.jp/Lecture/StatisticsC/ef-t-metal.html

方針:有限温度 T における $N(e)f(e, E_F)$ の積分を $E = 0 \sim \infty$ (実際には $E_F + ak_BT$) で行い、 電子密度 N に等しくなる $E_F(T)$ を求める。 $E_F(T)$ の初期値として 0 K の $E_F(0)$ を用いることで、Newton法でも安定して計算ができる。 近似式 $E_F(T) = EF(0) - \frac{\pi^2}{6} (k_BT)^2 N'(E_F(0)) / N(E_F(0))$ と比較する。

プログラム: ef-t-metal.py 実行法: python ef-t-metal.py

 $T(K) E_F(Newton法, eV) E_F(近似式, eV)$ 4.948988 4.948988 0 600 4.948554 4.948544 1200 4.947248 4.947211 4.944990 1800 4.945069 2400 4.942013 4.941880 3000 4.938075 4.937882 3600 4.933247 4.932994 4000 4.929529 4.929243

自由電子・非縮退近似:自由電子濃度 $D_{C}(E) = (2S+1) \frac{2\pi(2m)^{\frac{3}{2}}}{h^{3}} \sqrt{E-E_{C}} = \frac{\sqrt{2}}{\pi^{2}} \frac{m_{e}^{*2/3}}{h^{3}} \sqrt{E-E_{C}}$ $f(E) = \frac{1}{\exp[(E-E_{F})/k_{B}T]+1} \sim e^{\beta(E-E_{F})}$ $\beta = 1/(k_{B}T)$ $n_{e} = \int_{E_{C}}^{\infty} D_{C}(E) f(E) dE \sim \frac{\sqrt{2}}{\pi^{2}} \frac{m_{e}^{*2/3}}{h^{3}} e^{-\beta(E_{C}-E_{F})} \int_{0}^{\infty} \sqrt{e}\exp(-\beta e) de$ $e = E - E_{C}$

$$\sqrt{e} = x, e = x^2 de = 2xdx$$

$$\int_0^\infty \sqrt{e} \exp(-\beta e) de = \int_0^\infty 2x^2 \exp(-\beta x^2) dx$$

$$\int_0^\infty x^2 \exp(-x^2) dx = \frac{1}{4}\sqrt{\pi}$$

$$n_{e} \sim \frac{\sqrt{2}}{\pi^{2}} \frac{m_{e}^{*\frac{3}{2}}}{\hbar^{3}} e^{-\beta(E_{C}-E_{F})} \int_{0}^{\infty} 2x^{2} \exp(-\beta x^{2}) dx = \frac{1}{2\pi^{3/2}} \frac{1}{\beta^{3/2}} \frac{m_{e}^{*\frac{3}{2}}}{\hbar^{3}} e^{-\beta(E_{C}-E_{F})}$$

$$n_{e} \sim N_{C} \exp(-\beta(E_{C}-E_{F}))$$

$$N_{C} = 2 \left(\frac{2\pi m_{e}^{*} k_{B}T}{\hbar^{2}}\right)^{3/2} \quad \text{G導帯有効状態密度}$$
同様に

$$n_{h} \sim N_{V} \exp(-\beta(E_{F}-E_{V}))$$

$$N_{V} = 2 \left(\frac{2\pi m_{h}^{*} k_{B}T}{\hbar^{2}}\right)^{3/2} \quad \text{G電子帯有効状態密g}$$

$$n_e = N_C \exp(-\beta(E_C - E_F))$$

 $N_C = 2\left(\frac{2\pi m_e^* k_B T}{h^2}\right)^{3/2}$
G導帯有効状態密度
 $E(eV)$

同様に

$$n_{h} = N_{V} \exp(-\beta(E_{F} - E_{V}))$$

$$N_{V} = 2\left(\frac{2\pi m_{h}^{*}k_{B}T}{h^{2}}\right)^{3/2}$$
価電子帯有効状態密度

半導体の状態密度、電子、正孔

全状態密度: $D(E) = D_e(E) + D_h(E) + D_D(E) + D_A(E)$

How to calculate
$$E_{\mathbf{F}}$$
: Illustrative solution
 $N_e = \int_{E_C}^{\infty} D_C(E) f_e(E, E_F) dE$ $N_h = \int_{E_C}^{\infty} D_V(E) f_h(E, E_F) dE$
 $N_D^+ = N_D [1 - f_e(E_D, E_F)]$ $N_A^- = N_A [1 - f_h(E_A, E_F)]$
 $f_h(E, E_F) = 1 - f_e(E, E_F)$

Plot $\Delta Q = (N_{\rm A}^- + N_{\rm e}) - (N_{\rm D}^+ + N_{\rm h})$ w.r.t. $E_{\rm F}$ and find $\Delta Q = 0$

Bisection method (二分法): Monotonic func(単調関数)

Solution of f(x) = 0 for monotonic function f(x)

- 1. Start from a range $[x_0, x_1]$ where $f(x_0) < 0 \& f(x_1) > 0$ (or $f(x_0) > 0 \& f(x_1) < 0$)
 - * Solution exist in this range for a monotonic function
- 2. Solve the equation by the following iterative procedure

Case
$$f(x_0) < 0$$
 and $f(x_1) > 0$: Judge by $f(x_0) \cdot f(x_1) < 0$
1. $x_2 = (x_0 + x_1) / 2.0$
2. If $f(x_2) > 0$ ($f(x_0) \cdot f(x_2) < 0$), x_1 is replaced with x_2
If $f(x_2) < 0$ ($f(x_1) \cdot f(x_2) < 0$), x_0 is replaced with x_2

3. Solution x_2 is obtained when $|x_1 - x_0|$, $|f(x_1) - f(x_0)|$ becomes less than EPS.

Fermi準位の計算: プログラム

プログラム: EF-T-semiconductor.py

http://conf.msl.titech.ac.jp/Lecture/StatisticsC/EF-T-semiconductor.html 使用法: python EF-T-semiconductor.py EA NA ED ND Ec Nv Nc

使用例: python EF-T-semiconductor.py 0.05 1.0e15 0.95 1.0e16 1.0 1.2e19 2.1e18

キャリア密度の温度依存性とドナー準位

真性領域 – 出払い領域 – 不純物領域

計算した D(E) を使っても同様 $N_e = \int_{E_C}^{\infty} D_C(E) f_e(E, E_F) dE$ $N_h = \int_{E_C}^{\infty} D_V(E) f_h(E, E_F) dE$ $N_D^{+} = N_D [1 - f_e(E_D, E_F)]$ $N_A^{-} = N_A [1 - f_h(E_A, E_F)]$ $\Delta Q = (N_A^{-} + N_e) - (N_D^{+} + N_h) = 0$

EF-T-DOS.py, TotalDOS-SnSe.dat

http://conf.msl.titech.ac.jp/Lecture/inside/EF-T-DOS/EF-T-DOS.html run python EF-T-DOS.py T run python EF-T-DOS.py EF

Effective DOSs at the mid gap 0.2963 eV: $N_{\rm C} = 6.26 \text{e} + 17 \text{ cm}^{-3} \text{ (T}_0 = 299.86 \text{ K})$ $N_{\rm V} = 4_{10^{21}} [74e + 18 \text{ cm}^{-3} (T_0) = 299.86 \text{ K})$ 1018 V (cm^-3) 101 Ne(Boltz) Nh(Boltz) 10^{9} 10⁶ 0.0 0.2 -0.2 0.4 0.6 0.8 EF (eV)

Hall効果

電荷 q が速度 v でドリフト移動している

キャリア極性(R_Hの符号)、キャリア濃度n_{Hall}、移動度µ_{Hall}

- 速度 v に分布がある場合は?
- ・異方性がある場合は?
- ・異なる移動度(有効質量)のキャリアが混在している場合は?

多バンド、狭いバンドギャップのHall係数

多バンド、多層膜 $R_{H} = \gamma \sum \frac{\text{sgn}_{i} n_{i} \mu_{i}}{q \left(\sum n_{i} \mu_{i}\right)^{2}}$

 $\sigma = q \sum n_i \mu_i$

電子・正孔が共存 $R_{H} = \gamma \sum \frac{p\mu_{p}^{2} - n\mu_{n}^{2}}{q(n\mu_{n} + p\mu_{p})^{2}} \quad \sigma = q \sum n_{i}\mu_{i}$

電子伝導度と移動度

キャリア密度

$$n_e = \int_{E_C}^{\infty} D_C(E) f_e(E) dE =$$

 $\sum n_i$

occupied states in CB

伝導度と移動度

$$\sigma_x = en_e \frac{e}{m_e^*} \langle \tau^1 \rangle \longrightarrow \mu_{drift}$$

$$\left\langle \tau^{k} \right\rangle = -\frac{2}{3} \int_{E_{C}}^{\infty} \left(E - E_{m} \right) \tau(E)^{k} D_{C}(E) \frac{\partial f_{e}(E)}{\partial E} dE / n_{e}$$

$$\tau(E,T) = \tau_0 T^p (E - E_m)^{r-1/2}$$

例えば、τ(E)=一定という仮定で計算できる

熱起電力(Seebeck係数)

キャリア輸送特性: BoltzTraP

デバイスシミュレーションへの応用: SnO TFT

Parameters	Values
and gap of SnO	0.7 eV
nisation potential of SnO	5.8 eV
B DOS effective mass in SnO	2.05 m _e
ole mobility in SnO at RT	$2.4 \text{ cm}^2 \text{V}^{-1} \text{s}^{-1}$
ole density in SnO at RT	$2.5 \times 10^{17} \mathrm{cm}^{-3}$
ctivation energy of hole densi	ity in SnO 45 meV
ate insulator (a-Al ₂ O ₂) thick	ness 210 nm
elative permittivity of a-Al-O	
elative permittivity of VSZ	27
elative permittivity of SnO	15
hannel dimension (L/W)	50/300 mm
	x15
Binding energy (eV)	Binding energy (eV)
1.0 (c) Calculated DOS Fitting Color Color Fitting Color C	$\begin{bmatrix} 10^{21} & (d) & E_F (V_{GS} = -10 \text{ V}) \\ 10^{20} & E_F (V_{GS} = 0 \text{ V}) \\ 10^{19} & E_F (V_{GS} = 15 \text{ V}) \\ 10^{17} & VBM \\ 10^{17} & 0 & 0.1 & 0.2 & 0.3 \\ \hline & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & $
Binding energy (eV)	E - E _{VBM} (ev)

全エネルギーから何がわかるか

絶対零度における安定構造

構造緩和計算と体積弾性率: Si

一般的な構造緩和: C12A7

VASP, PBE

一般的な構造緩和計算の結果

カッコ内がPBEでの計算結果。1%以内の誤差で計算できている

Al (FCC)	a = 4.04975 (4.0462)
Ca (FCC)	a = 5.5884 (5.51942)
Mg (HCP)	a = 3.2094 (3.1869) $c = 5.2103$ (5.19778)
Na (BCC)	a = 4.235 (4.20437)
Si	a = 5.41985 (5.46631)
GaAs	a = 5.65359 (5.7605)
GaN (wurzite)	a = 3.186 (3.24541) $c = 5.176$ (5.28965) $z(N) = 0.375$ (0.375783)
NaCl	a = 5.62 (5.65062)
MgO	a = 4.2109 (4.23617)
CaO	a = 4.8112 (4.83784)
ZnO	a = 3.2427 (3.25452) $c = 5.1948 (5.21411)$ $z(O) = 0.3826 (0.3816)$
In ₂ O ₃	a = 10.117 (10.0316)
SnO ₂	a = 4.738 (4.71537) $c = 3.1865$ (3.18356)
TiO ₂	a = 4.6061 (4.5941) $c = 2.9586 (2.9589)$
SrCu ₂ O ₂	a = 5.458 (5.48) $c = 9.837 (9.825)$
CuAlO ₂	$a = 5.9169 (5.896)$ $\alpha = 27.915 (28.1)$
β-Ga ₂ O ₃	$a = 12.23$ (12.026) $b = 3.04$ (2.9927) $c = 5.8$ (5.7185) $\beta = 103.7$
	(103.86)
InGaO ₃ (ZnO) ₁	a = 3.299 (3.29491) $b = 5.714$ (5.70415) $c = 26.101$ (25.4037)
$12CaO \cdot 7Al_2O_3$	<i>a</i> = 11.989 (12.0284, 11.997, 11.9884)
(C12A7)	$\alpha = 90 (\alpha = 89.9895, \beta = 89.9334, \gamma = 89.9619)$

BaSの圧力誘起相転移: △H (0 K 近似)

常圧安定相: NaCl型構造(B1) 高圧安定相: CsCl型構造(B2)

> $\Delta G = \Delta (U + PV - TS)$ => ~ $\Delta H = \Delta E_{scf} + P\Delta V$

有限温度の相転移: VASP + Phonopy $F(V,T) = E_0(V) + F_{phonon}(V,T) + F_{electron}(V,T)$ $F_{phonon} = \frac{1}{2} \sum \hbar \omega_q + k_B T \sum ln(1 - e^{-\hbar \omega_q/k_B T})$ $F_{electron} = E_{electron} - TS_{electron}$ $E_{electron} = \int_{-\infty}^{\infty} n(e)f(e)de - \int_{-\infty}^{E_F(0K)} n(e)de$ $S_{electron} = -k_B \int_{-\infty}^{\infty} n(e)[f(e)\ln f(e) + (1 - f(e)\ln(1 - f(e))]de$

反応熱、相安定性

熱力学における公理: 熱力学三法則

- 熱力学第零法則: $T_A = T_B$ であり $T_C = T_A$ であれば、 $T_C = T_B$ 2つの系 A, B が熱平衡にあり、第三の系 C がこのうちの いずれかと熱平衡にあれば、もう一つの系とも熱平衡にある
- ・熱力学第一法則(エネルギー保存の法則)
 - 一般の系: $\Delta U = Q + W$
 - 系に生じるエネルギー変化 ΔU は 系外とやり取りする熱 Q か仕事 W だけ 孤立系 : $\Delta U = 0$ (系外との Q, W のやり取りがない)
 - 孤立系において全エネルギー(内部エネルギー)は一定に保たれる
- ・熱力学第二法則 (エントロピー増大の法則)
 - 孤立系において自発変化が起こると、 系のエントロピーはそれにより増大する: $\Delta S > 0$
- ・ 熱力学第三法則(エントロピーには原点がある)
 - 絶対温度が0Kに近づくと、系の絶対エントロピーもゼロに近づく。
 - ・完全結晶状態(基底状態が縮退していない)である物質について
 - ・熱力学三法則の中ではもっとも妥当性が怪しい。

化学反応はどのように進むか

熱力学三法則

- 第一法則:エネルギー保存則
- 孤立系において全エネルギーは一定に保たれる(孤立系において∆U=0)
- 第二法則:エントロピー増大の法則
- 孤立系において自発変化が起こると、系のエントロピーはそれにより増大する。 第三法則:エントロピーの絶対値を決められる
 - 絶対温度が0Kに近づくと、系の絶対エントロピーもゼロに近づく。

孤立系でない場合:

系に生じるエネルギー変化 ΔU は熱 q か仕事 w のやり取りで生じる: $\Delta U = q + w$ => エントロピーではなく、系の自由エネルギーにより判断

孤立系	$-\Delta S \leq 0$
定温·定積系	$\Delta F \leq 0$
定温·定圧系	$\Delta \boldsymbol{G} \leq \boldsymbol{0}$

自由エネルギー エントロピー Helmholtzエネルギー Gibbsエネルギー

例:一定圧力、一定温度で粒子数が一定の場合、
 ・系のGibbs エネルギー が最小になるように反応が進む
 ・平衡状態では反応式の両辺の△G=0

平衡の三条件

2つの系A、Bが平衡にある時は以下の条件が満たされている

- ・熱的平衡 : 温度が等しい $T_A = T_B$
- ・力学的平衡: 圧力が等しい $P_A = P_B$
- 化学的平衡: すべての構成元素と電子の化学ポテンシャルが等しい

 ^µ_A = µ_B

自由エネルギー

• 定温•定圧

- ・断熱・孤立系 (0 K, 0 atm)内部エネルギー U
 ・断熱・定圧 (0 K) エンタルピー H=U+PV
 ・定温・定積 (0 atm) Helmholtzエネルギー F=U-TS
 - Gibbsエネルギー G = U + PV TS

第一原理計算: 断熱近似 (電子と原子核の運動を別に扱う) 電子系の計算:電子の内部エネルギー U_{el} 、体積V、圧カPRigid band近似:電子の励起エネルギー $\Delta U_{el}(T)$,配置エントロピー $\Delta S_{ele}(T)$ 核系の計算:フォノンエネルギー U_{phonon} ,エントロピー S_{phonon} (あるいは F_{phonon})

全エネルギーから・・・

反応熱、生成エネルギー etc: 反応式を書き、それぞれのエネルギーを計算

 $\mathbf{A} + \mathbf{B} \Longrightarrow \mathbf{C} + \mathbf{D}$

0 K, 0 atm 0 K, 0 atm 1 $\Delta E = (E(C) + E(D)) - (E(A) + E(B))$ 1 $\Delta H = (H(C) + H(D)) - (H(A) + H(B))$ 1 H(a) = E(a) + PV(a)有限温度, 有限圧力: $\Delta G = (G(C) + G(D)) - (G(A) + G(B))$

 $G(\mathbf{a}) = E(\mathbf{a}) + PV(\mathbf{a}) - TS(\mathbf{a})$

例: Naの昇華熱

Na (結晶) => Na (原子) ※ Na(結晶)の全エネルギー : E = -2.6203 eV/cell ※ Na(原子)の全エネルギー : E = -0.0007 eV/atom ※ Na(結晶) => Na(原子) : ΔE = 1.3094 eV = 126 kJ/mol ※ RT = 2.49 kJ/mol (300 K)を足してエンタルピーにする: ΔH = 128 kJ/mol

※ 文献值: 108 kJ/mol

NaClの生成・凝集エネルギー

- NaCl (結晶) => Na (結晶) + ½ Cl₂ (気体) ※ NaCl(結晶) の全エネルギー: E = -27.2610 eV/cell (4NaCl) ※ Na(結晶)の全エネルギー : E = -2.6203 eV/cell (2Na) ※ Cl₂(分子)の全エネルギー : E = -3.5504 eV/cell (2Cl) ※ 生成エネルギー NaCl(結晶) => Na(結晶) + 1/2 Cl₂(分子): -3.7301 eV/Na = 359.9 kJ/mol ※ ½ RT = 1.2 kJ/mol (300 K)を足してエンタルピーにする:
 - $\Delta H = 361 \text{ kJ/mol } \mathbf{\hat{x}} \mathbf{\hat{k}} \mathbf{\hat{k}$
- NaCl (結晶) => Na (原子) + Cl (原子) ※ Na(原子)の全エネルギー : E = -0.0007 eV/atom ※ Cl(原子)の全エネルギー : E = -0.0183 eV/atom ※ 凝集エネルギー NaCl(結晶) => Na(原子) + Cl(原子): 6.7962 eV/NaCl = 655.7 kJ/mol 文献値 641 kJ/mol ※ 2RT = 5.0 kJ/mol (300 K)を足してエンタルピーにする: ΔH = 660.7 kJ/mol 文献値 641 kJ/mol

Siの凝集エネルギー

Si (結晶) => Si (原子) ※ Si(結晶)の全エネルギー: E = -43.3748 eV / 8Si = 523 kJ/mol ※ Si(原子)の全エネルギー -0.862 eV ※ RT = 2.49 kJ/mol (300 K)を足してエンタルピーにする: ΔH = 434 kJ/mol 文献値 446 kJ/mol

結合エネルギーは、結合数2で割ればよい。 Si-Siの結合エネルギー: E = 217 kJ/mol 文献値 224 kJ/mol

P. 47

§2.8 化学ポテンシャル

粒子 a の化学ポテンシャルの定義:

$$\mu_a = \left(\frac{\partial G}{\partial N_a}\right)_{T,p,(N_a}$$
以外)
相 A, B 間の化学平衡: $\mu_{a,A} = \mu_{a,B}$

その他の関係式

$$dS = \frac{P}{T}dV + \frac{dU}{T} - \frac{1}{T}\sum_{j=1}^{n}\mu_{j}dN_{j}$$
(2.40)

$$dF = -SdT - PdV + \sum_{j=1}^{n}\mu_{j}dN_{j}$$
(2.41)

$$dG = -SdT + VdP + \sum_{j=1}^{n}\mu_{j}dN_{j}$$
(2.41)

 $G(T, p, N_a) = \sum_a N_a \mu_a$

0 K: $H_A(T, p, N_a) = \sum_A (E_A + PV_A) = \sum_a N_a \mu_a$

化学的相安定性: SrTiN₂を例に

- 1. 可能性のある相: Sr, Ti, N₂, SrN, Sr₂N, SrN₂, SrN₆, TiN, Ti₂N, など
- 2. 熱力学条件:自由エネルギー=構成元素の化学ポテンシャルの和

例: $\Delta \mu_{Sr} + \Delta \mu_{Ti} + 2\Delta \mu_N = \Delta H_{SrTiN_2}$ (DFTで計算) $\mu_e = \mu_e^0 + \Delta \mu_e$: 元素 *e* の化学ポテンシャル (μ_e^0 は単体の化学ポテンシャル) 化学ポテンシャルは合成条件におけるパラメータ: 計算結果は μ_e に関するマップになる

- 3. 自由エネルギー (計算されるのは一般的にエンタルピー) に関する相安定条件 $\Delta \mu_{Sr} + \Delta \mu_{Ti} + 2\Delta \mu_N = \Delta H_{SrTiN_2} = -5.87 eV < 0$
- 2. 異相として単体が析出しない条件 $\Delta \mu_{Sr} < 0$ ①, $\Delta \mu_{Ti} < 0$ ②, $\Delta \mu_N < 0$ ③
- 3. 他の異相が出現しない条件:

 $2\Delta\mu_{Ti} + \Delta\mu_{N} < \Delta H_{Ti_{2}N} \quad (4)$ $\Delta\mu_{Ti} + \Delta\mu_{N} < \Delta H_{TiN} \quad (5)$ $2\Delta\mu_{Sr} + \Delta\mu_{N} < \Delta H_{Sr_{2}N} \quad (6)$ $\Delta\mu_{Sr} + \Delta\mu_{N} < \Delta H_{SrN} \quad (7)$ $\Delta\mu_{Sr} + 2\Delta\mu_{N} < \Delta H_{SrN_{2}} \quad (8)$ $\Delta\mu_{Sr} + 6\Delta\mu_{N} < \Delta H_{SrN_{6}} \quad (9)$

安定境界における平衡条件: SrTiN₂を例に

1. 熱力学の化学平衡条件:

複数相が共存する領域 (相境界) では各粒子 (元素、電子) の化学ポテンシャルが等しい A point: SrTiN₂ は Sr, TiNと平衡

 $\mu_{Sr} \text{idSrの化学ポテンシャルに等し} => \Delta \mu_{Sr} = 0$ $\mu_{Ti}, \mu_N \text{idTiNの化学ポテンシャルに等し} > \Delta \mu_{Ti} + \Delta \mu_N = \Delta H_{TiN} \text{(DFTで計算)}$ SrTiN₂の条件 => $\Delta \mu_{Sr} + \Delta \mu_{Ti} + 2\Delta \mu_N = \Delta H_{SrTiN_2} \text{(DFTで計算)}$

=> $\Delta \mu_{Sr}, \Delta \mu_{Ti}, \Delta \mu_N$ がすべて決まる

https://www.aqua.mtl.kyoto-u.ac.jp/wordpress/chesta.html

欠陥の生成エネルギー

128原子supercellに欠陥を導入

分散が小さい:局在化している欠陥 理想結晶の分散と平行:ホストと強く混成して非局在化 【注意】 supercellの大きさを変えて結果が変わらないことを確認する必要

Oba et al., J. Appl. Phys. 90, 824 (2001)

完全結晶および欠陥を含むスーパーセルのバンド構造

F. Oba et al., Phys. Rev. B, 77, 245202 (2008).

欠陥計算の問題

透明導電体のキャリア濃度 <10²¹ cm⁻³ (<1/100, $E_F \sim E_C + 1.0 \text{ eV}$) 半導体のキャリア濃度 $10^{15} \sim 10^{18} \text{ cm}^{-3}$ (1/10⁸ ~ 1/10⁵, $E_F = E_C - 0.5 \sim E_C - 0.2 \text{ eV}$) 【注意】いずれにしても、欠陥計算は「希薄極限」

$$\begin{split} & E^{f}{}_{D,q} \left(E_{F}, \mu \right) \\ &= E_{\mathrm{D},q} - E_{0} - n_{\mathrm{Zn}} \mu_{\mathrm{Zn}} - n_{\mathrm{O}} \mu_{\mathrm{O}} \\ &+ q \left(E_{F} - E_{VBM}^{0} \right) \end{split}$$

ZnOとの平衡条件: $\mu_{Zn} + \mu_O < \mu_{ZnO}$ Zn過剰条件: $\mu_{Zn} = \mu_{Zn(bulk)}$ O過剰条件: $\mu_O = \mu_{O2}$ 中間条件: $\mu_O < \mu_{O2}, \mu_{Zn} < \mu_{Zn(bulk)}$

from canonical distribution (Boltzmann / Gibbs distribution)

 $[\text{ideal}]: [D^{+2}]: [D^{+1}]: [D^{0}]: [D^{-1}] = 1: N_{site}^{D,+2} e^{-\frac{E_{D,+2}^{f}(E_{F})}{k_{B}T}}: N_{site}^{D,+1} e^{-\frac{E_{D,+1}^{f}(E_{F})}{k_{B}T}}: N_{site}^{D,0} e^{-\frac{E_{D,0}^{f}(E_{F})}{k_{B}T}}: N_{site}^{D,-1} e^{-\frac{E_{D,-1}^{f}(E_{F})}{k_{B}T}}$

For negative $E^{f}_{D,q}$, $[D^{q}] \gg [ideal]$ (the total crystal sites), Indicating $E_{\rm F}$ is pinned between E_{F} 's of $E^{f}_{D,q}(E_{F}) \sim 0$

[D^q] can be calculated as follows,
but not consistent with the assumption of 'dilution limit'

Partition function: $Z(E_F) = \sum_{site,D,q} e^{-\beta G_{D,q}(E_F)} = \sum_{D,q} N_{site} e^{-\beta G_{D,q}(E_F)}$ Probability of D_q : $P_{D,q} = N_{site} e^{-\beta G_{D,q}(E_F)}/Z$ $\langle N_{D,q} \rangle = N_{site} P_{D,q}/Z$

For
$$e^{-\beta G_{D,q}(E_F)} \ll 0$$
, $Z(E_F) \sim N_{site}$, $\langle N_{D,q} \rangle \sim N_{site} e^{-\beta G_{D,q}(E_F)}$

平衡フェルミ準位 E_{F,eq}: 電荷中性条件から決定される 欠陥の電荷総和 + 自由正孔電荷 + 自由電子電荷 = 0 E_Cに近い => native n-type conductor、平衡キャリア濃度: 1.1×10¹⁸ cm⁻³

X. He et al., J. Phys. Chem. C 123 (2019) 19307

ドナー準位、アクセプター準位: SnS (:H)

欠陥電荷は正味電荷(結晶サイトからの差):

O²⁻ 位置を F⁻ で置換すると F₀⁻ 中性酸素欠損: V₀⁰: O²⁻ がなくなり、 2e⁻ が捕獲されている => 電子が捕獲されていない酸素欠損は V₀⁻⁻ (V₀²⁺)

