Carrier transport: Evaluation and theory キャリア輸送: 評価と基礎理論

Tokyo Tech, IIR, MSL Toshio KAMIYA

東京工業大学 フロンティア材料研究所

神谷利夫

References / 参考文献

「薄膜トランジスタ」、薄膜材料デバイス研究会編、コロナ社、2010年第3刷 「半導体評価技術」、河東田隆 編著、産業図書、1989年 「半導体の電子物性工学」、太田英二、坂田亮 共著、培風館、2005年 Physics of Semiconductor Devices, S.M. Sze, 1981年 「太陽電池の物理」、宇佐美徳隆、石原照也、中嶋一雄監訳、丸善、2010年 Heavily doped semiconductors, Victor I. Fistul', Plenum Press, 1969 「熱電変換工学-基礎と応用-」、坂田亮 編、REALIZE INC. 「熱電材料の物質科学」、寺崎一郎、内田老鶴圃、2017年

絶縁体の種類

・バンド絶縁体

有限なバンドギャップ

- BZ境界における干渉(金属)
- ・結合ー反結合による分裂(共有性)
- ・異種原子間のエネルギー準位差 (イオン性)
- ・モット絶縁体

電子間反発による損 U> バンド形成による利得 W 電荷移動による損 Δ> バンド形成による利得 W (電荷移動型絶縁体)

- ・乱雑性による局在化 (Anderson局在) 電子の乱散乱による波動関数の干渉により局在
- Topological insulator
 波動関数の対称性によりバンドギャップが開いたり閉じたり

電気伝導度

Mobility vs. doping conc.

S.M. Sze, Physics of Semiconductor Devices

図 6.5 各種散乱機構による電子移動度。GaAsの場合,実線および破線は計算値, のは実測値,各種散乱機構が同時に存在するときの移動度の計算には,空間電荷散 乱は考慮されていない。

ZnOの移動度

FCA解析により求めた有効質量、緩和時間

注:高ドープ(>10¹⁹ cm⁻³)膜で測定

	移動度	有効質量	τ	Eg
	(cm^2/Vs)	(m _e)	(10^{-15} s)	(eV)
Si	$\mu_{e} = 1500$	$m_{et} = 0.98$	160 (el)	1.12
	μ_{h} =500	$m_{el} = 0.19$		
		$m_{\rm ht} = 0.49$		
		$m_{\rm hl} = 0.16$		
In ₂ O ₃ :Sn	μ _e =24~45	$m_{e}=0.3$	6.5	3.37
ZnO:Ga	$\mu_{e} = 8 \sim 25$	$m_e = 0.28 \sim 0.33$	5.1	3.37
InGaO ₃ (ZnO) ₅	$\mu_{e} = 16$	$m_e = 0.32$	3.0	
LaCuOSe:Mg	μ _h =3.4	m _h =1.6	4.2	2.7
C12A7:e ⁻	$\mu_{e} = 5.2$	$m_e = 0.82$	2.4	7
Cu _{1.7} Se	μ_{h} =5.3	$m_{h}=1.0$	3.0	2
a-2CdO·GeO ₂	$\mu_{e} = 12$	$m_{e}=0.33$	2.3	3.4
a-2CdO·PbO ₂	$\mu_{e} = 10$	$m_e = 0.30$	1.7	1.8
a-InGaO ₃ (ZnO) _m	$\mu_{e} = 13 \sim 21$	$m_e = 0.34 \sim 0.36$	2.5	3.0~2.85
(m=1~4)		(m=1)		
$a-Zn_{0.35}In_{0.35}Sn_{0.3}O_x$	$\mu_{e} = 10$	$m_e = 0.53$	3.9	3.3

散乱機構と移動度の温度依存性

$$\tau = \tau_0 \varepsilon^{r-1/2} \qquad \mu = \frac{e}{m_e} \langle \tau \rangle = \mu_0 T^s$$
音響フォノン散乱
$$\tau = \tau_0 \varepsilon^{-1/2}, \ \mu \propto T^{-3/2}$$
(非縮退)
$$\tau = \tau_0 \varepsilon^{-1/2}, \ \mu \propto T^{-1}$$
(縮退)
$$\tau = \tau_0 \varepsilon^0, \ \langle \tau \rangle \propto \left[\exp(\hbar \omega_0 / T^{-1/2}) \right]$$

$$\tau = \tau_0 \varepsilon^0, \ \langle \tau \rangle \propto T^{-1/2}$$

$$\tau = \tau_0 \varepsilon^0, \ \langle \tau \rangle \propto T^{-1/2}$$

$$\tau = \tau_0 \varepsilon^0, \ \langle \tau \rangle \propto T^{-1/2}$$

$$\tau = \tau_0 \varepsilon^{-1/2}, \ \mu \propto T^{-1/2}$$

$$\tau = \tau_0 \varepsilon^{-1/2}, \ \mu \propto T^{-1/2}$$

Heavily doped semiconductor, P.86

A model for the high-temperature transport properties of heavily doped n-type silicongermanium alloys, JAP 69 (1991) 331 Fig. 3

86

TRANSPORT PHENOMENA

[Ch. 3

TABLE	3.2.	$\tau = \tau_0 (\epsilon^*)'$	-1/2
-------	------	-------------------------------	------

Scattering centers, r	τ _o	Notation used
Acoustical vibrations (phonon theory), r = 0	$\frac{9\pi}{4\sqrt{2}}\frac{\hbar^4\omega^2M}{C^2a^4\left(m^*kT\right)^{3/2}}$	ω - velocity of sound; M - atomic mass; C - Bloch constant; a - lattice parameter
Acoustical vibrations (deformation potential theory), r=0 (T)-1	$\frac{\pi \hbar^4 C_{11}}{\sqrt{2E_1^2} (m^* kT)^{4/2}}$	C_{II} - elastic constant for longitudinal vibrations; $E_1 = \Omega_0 dE_0 / d\Omega_i$; E_0 - energy of allowed band edge; Ω_0 - initial volume of unit cell before deformation
Optical vibrations $(T \ll \theta_D)$ in heavily doped crystals, $r = \frac{1}{2}$	$\frac{a^{3}M}{2\pi\sqrt{2m^{4}}}\frac{\left(\hbar\omega_{0}\right)^{3/2}}{\left(\gamma Ze^{2}\right)^{2}}\times\times\left[\exp\left(\frac{\hbar\omega_{0}}{kT}\right)-1\right](1-f_{0})$	 ω₀ - limiting frequency of longitudinal optical vibrations; Ze - ion charge; γ - factor representing the polarizability of ions; f - Fermi function; θ_D - Debye temperature
Optical vibrations $(T \ll \theta_D)$ in lightly	$\frac{a^{a}M}{2\pi\sqrt{2m^{*}}}\frac{\left(\hbar\omega_{0}\right)^{a/2}}{\left(\gamma Ze^{2}\right)^{2}}\times$	· · · · · · · · · · · · · · · · · · ·

TABLE III. Approximate ϵ and T dependencies for electron-scattering mechanisms.

Scattering mechanism	Energy dependence of $ au au$		Temperature dependence of $\mu^{\text{nondegen}}\mu^{\text{degen}}$	
Intravalley acoustic phonons	$\epsilon^{-1/2}$	T - 1	T = 3/2	T^{-1}
Intervalley optical phonons	$\epsilon^{-1/2}$	T^{-1}	T = 3/2	T - I
Ionized impurities	$\epsilon^{3/2}$	Τ"	$T^{3/2}$	T^0
Alloy disorder	$\epsilon^{-1/2}$	T^{0}	T - 1/2	T^{0}
Neutral impurities	€ ⁰	T°	T ^o	T^0

Simple model of carrier transport

簡単なモデル解析

移動度とは?

$\sigma = en\mu$

Definition in solid-state physics

ー電子の運動方程式
$$F = m_e \left(\frac{d}{dt} v - \frac{1}{\tau} v \right) = qE$$

 m_e : 有効質量
 τ :運動量緩和時間 (散乱時間)
電子が持っている運動量が散乱を受けて
0 になる平均時間

定常状態での速度 $v = \frac{e}{m_e} \tau E$ ドリフト速度 v_d :電界によって駆動される速度 ⇔ 熱速度、Fermi速度、拡散速度 ドリフト移動度 $\mu_d = \frac{v_d}{E} = \frac{e}{m_e} \tau$

バンド伝導の極限条件

$$v_{th} = \sqrt{2m_e^*k_BT} = 2 \times 10^5 \text{ m/s}$$

*l*_{th} = v_{th}τ >> 最近接原子間距離 a-IGZO中のIn-In距離: 3.1 Å => τ >> 1.5 fs

ところが、IGZOでは~ $0.2 \text{ cm}^2/\text{Vs}$ の Hall移動度が測定可能 $l_{\text{th}} = 0.1 \text{ Å }???$

非平衡状態でのキャリアの分布

$$\frac{d(n+\Delta n)}{dt} = \frac{1}{e} \nabla \mathbf{J}_n + G_n - U_n \qquad \qquad \mathbf{J} = eD\nabla n + en\frac{e\langle \tau \rangle}{m_e^*} \mathbf{E}$$

擬フェルミ準位

$$n = n_0 + \Delta n = N_c \exp\left(-\frac{E_c - E_{Fn}}{k_B T}\right) \qquad p = p_0 + \Delta p = N_v \exp\left(-\frac{E_{Fp} - E_v}{k_B T}\right)$$

電荷 q (電子: -e, 正孔: +e) Hall 第

図 3·24 Hall 効果の実験

キャリア極性(R_Hの符号)、キャリア濃度n_{Hall}、移動度µ_{Hall}

Hall effect

太田英二、坂田亮著、半導体の電子物性光学、培風館 (2005)

-e: Electron charge, Under E_x and B_z Motion of dynamics $m_e^* \left(\frac{dv_i}{dt} + \frac{v_i}{\tau} \right) = -e(E + v_i \times B)$ Average velocity $\langle \boldsymbol{v} \rangle = \sum \boldsymbol{v_i} / n$ $m_e^* \left(\frac{d \langle \boldsymbol{v} \rangle}{dt} + \frac{\langle \boldsymbol{v} \rangle}{\tau} \right) = -e(\boldsymbol{E} + \langle \boldsymbol{v} \rangle \times \boldsymbol{B})$ $m_e^* \langle \boldsymbol{v} \rangle_{\chi} = -e\tau (E_{\chi} + \langle \boldsymbol{v} \rangle_{\nu} B_z)$ $m_e^* \langle \boldsymbol{v} \rangle_{\boldsymbol{v}} = -e\tau (E_{\boldsymbol{v}} - \langle \boldsymbol{v} \rangle_{\boldsymbol{x}} B_{\boldsymbol{z}})$ $m_{e}^{*} \langle \boldsymbol{v} \rangle_{z} = -e\tau E_{z}$ $\langle \boldsymbol{v} \rangle_{\chi} = -\frac{e\tau}{m_e^*} \frac{E_{\chi} + \frac{e\tau}{m_e^*} B_Z E_{\chi}}{1 + \left(\frac{e\tau}{m_e^*}\right)^2 B_Z^2}$ $\langle \boldsymbol{v} \rangle_{\boldsymbol{y}} = -\frac{e\tau}{m_e^*} \frac{E_{\boldsymbol{y}} - \frac{e\tau}{m_e^*} B_{\boldsymbol{z}} E_{\boldsymbol{x}}}{1 + \left(\frac{e\tau}{m_e^*}\right)^2 B_{\boldsymbol{z}}^2}$ $\langle \boldsymbol{v} \rangle_{\boldsymbol{x}} = -\frac{e\tau}{m_e^*} E_{\boldsymbol{z}}$

Hall effect

太田英二、坂田亮著、半導体の電子物性光学、培風館 (2005)

Current
$$J = -e\langle v \rangle = \frac{e^2 n\tau}{m_e^*} \begin{pmatrix} \frac{1}{1 + \left(\frac{e\tau}{m_e^*}\right)^2 B_Z^2} & \frac{\left(\frac{e\tau}{m_e^*}\right)^2 B_Z}{1 + \left(\frac{e\tau}{m_e^*}\right)^2 B_Z^2} & 0\\ -\frac{\left(\frac{e\tau}{m_e^*}\right)^2 B_Z}{1 + \left(\frac{e\tau}{m_e^*}\right)^2 B_Z^2} & \frac{1}{1 + \left(\frac{e\tau}{m_e^*}\right)^2 B_Z^2} & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} E_x\\ E_y\\ E_z \end{pmatrix} \\ = \begin{pmatrix} \sigma_{xx} & \sigma_{xy} & 0\\ \sigma_{yx} & \sigma_{yy} & 0\\ 0 & \sigma_{zz} \end{pmatrix} \begin{pmatrix} E_x\\ E_y\\ E_z \end{pmatrix} \\ = \sigma_{xx} \left[\mathbf{E} + \left(\frac{e\tau}{m_e^*}\right)^2 \mathbf{B}(\mathbf{E} \cdot \mathbf{B}) + \frac{e\tau}{m_e^*}(\mathbf{E} \times \mathbf{B}) \right] \\ \omega_c = \left(\frac{e}{m_e^*}\right) B_z$$
: cyclotron frequency

Hall effect

太田英二、坂田亮著、半導体の電子物性光学、培風館 (2005)

Hall effect: Two-carrier model

太田英二、坂田亮著、半導体の電子物性光学、培風館 (2005)

When electrons and holes coexist

$$J_{e} = \sigma_{e}E - \sigma_{e}\mu_{e}E \times B$$

$$J_{h} = \sigma_{h}E + \sigma_{h}\mu_{h}E \times B$$

$$J = J_{e} + J_{e} = (\sigma_{e} + \sigma_{h})E + (-\sigma_{e}\mu_{e} + \sigma_{h}\mu_{h})E \times B$$

$$R_H = \frac{n_h \mu_h^2 - n_e \mu_e^2}{e(n_h \mu_h + n_e \mu_e)^2}$$

(i) Only holes: $n_e = 0 \implies R_H = \frac{\mu_h}{en_h}$ (ii) Same mobility: $\mu_h = \mu_e = \mu \implies R_H = \frac{n_h - n_e}{e(n_h + n_e)^2}$ (iii) Nearly intrinsic: $n_h \sim n_e \sim n_i \implies R_H = \frac{1 - \mu_e / \mu_h}{en_i (1 + \mu_e / \mu_h)}$

多バンド、狭いバンドギャップのHall係数

多バンド、多層膜 $R_{H} = \gamma \sum \frac{\text{sgn}_{i} n_{i} \mu_{i}}{q \left(\sum n_{i} \mu_{i}\right)^{2}}$

 $\sigma = q \sum n_i \mu_i$

電子・正孔が共存 $R_{H} = \gamma \sum \frac{p\mu_{p}^{2} - n\mu_{n}^{2}}{q(n\mu_{n} + p\mu_{p})^{2}} \quad \sigma = q \sum n_{i}\mu_{i}$

Magnetoresistance: Drude model

太田英二、坂田亮著、半導体の電子物性光学、培風館 (2005)

Current
$$J = -e \langle \boldsymbol{v} \rangle = \frac{e^2 n \tau}{m_e^*} \begin{pmatrix} \frac{1}{1 + \left(\frac{e \tau}{m_e^*}\right)^2 B_Z^2} & \frac{\left(\frac{e \tau}{m_e^*}\right)^2 B_Z^2}{1 + \left(\frac{e \tau}{m_e^*}\right)^2 B_Z^2} & 0\\ -\frac{\left(\frac{e \tau}{m_e^*}\right)^2 B_Z}{1 + \left(\frac{e \tau}{m_e^*}\right)^2 B_Z^2} & \frac{1}{1 + \left(\frac{e \tau}{m_e^*}\right)^2 B_Z^2} & 0\\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} E_X \\ E_y \\ E_Z \end{pmatrix}$$

Two carrier model

$$J = J_e + J_e = (\sigma_e + \sigma_h)E + (-\sigma_e\mu_e + \sigma_h\mu_h)E \times B$$

$$\rho_{xx}(B) = \operatorname{Re}(\rho) = \frac{1}{e} \frac{(n_h\mu_h + n_e\mu_e) + (n_h\mu_e + n_e\mu_h)\mu_h\mu_eB^2}{(n_h\mu_h + n_e\mu_e)^2 + (n_h - n_e)^2\mu_h^2\mu_e^2B^2},$$

$$\rho_{yx}(B) = -\operatorname{Im}(\rho) = \frac{B}{e} \frac{(n_h\mu_h^2 - n_e\mu_e^2) + (n_h - n_e)\mu_h^2\mu_e^2B^2}{(n_h\mu_h + n_e\mu_e)^2 + (n_h - n_e)^2\mu_h^2\mu_e^2B^2}.$$

Two carrier model of MR

MR-TwoCarriermodel.py (to be uploaded for Lab only web) e.g. in APL 107, 182411 (2015) $\rho_{xx}(B) = \operatorname{Re}(\rho) = \frac{1}{e} \frac{(n_h \mu_h + n_e \mu_e) + (n_h \mu_e + n_e \mu_h) \mu_h \mu_e B^2}{(n_1 \mu_1 + n_e \mu_e)^2 + (n_1 - n_e)^2 \mu^2 \mu^2 B^2}$

$$\rho_{xx}(B) = \operatorname{Im}(\rho) = \frac{B}{e} \frac{(n_h \mu_h + n_e \mu_e)^2 + (n_h - n_e)^2 \mu_h^2 \mu_e^2 B^2}{(n_h \mu_h^2 - n_e \mu_e^2) + (n_h - n_e) \mu_h^2 \mu_e^2 B^2},$$

of parameters must be larger than # of constraints,

of parameters: four n_h , μ_h , n_e , μ_e # of constraints: three For parabolic $\rho_{xx}(B)$: $a_{xx}^0 = \rho_{xx}(0)$, and a_{xx}^2

For linear $\rho_{xy}(B)$: a_{xy}^1 only

At least two parameter sets give similar residuals S²

ZnO/ScAlMgO₄における見かけのn_{Hall}異常

Katase et al., Cryst. Growth&Des. 10, 1084 (2010)

Non-equilibrium statistics dynamics

非平衡統計力学

熱平衡状態での計算手順

- 1. パラメータ(m_e^{*})を決める
- 2. 関連する定数(N_c, D_{c0}など)を計算する
- 3. 状態密度D(E)を計算する
- 4. 0Kで中性の状態を考え、考えているエネルギー範囲での 電子数 N_eを計算する (電荷中性条件)。
- 5. E_Fが場所によらないとして、バンド図を描く。 CBM,VBMのエネルギー E_{CBM}(x), E_{VBM}(x)が決めるべきパラ メータ。
- 6. $E_{\text{CBM}}(x), E_{\text{VBM}}(x)$ から過剰電荷密度 $\rho_{e}(x) = N_{e}\exp(-(E_{\text{CBM}}(x)-E_{\text{F}})/k_{\text{B}}T)$ $\rho_{h}(x) = N_{v}\exp(-(E_{\text{F}}-E_{\text{VBM}}(x))/k_{\text{B}}T)$ を計算する。
- 7. Possisonの方程式

 $d^2 E_{CBM}(x)/dx^2 = e(-\rho_e(x)+\rho_h(x)+N_D^+(x)-N_A^-(x))/\epsilon$ を満足するように、5,6を自己無撞着に解く。

非平衡状態での計算手順

平衡状態:マクロな物性の時間変化はない。系は閉じている。 定常状態:マクロな物性の時間変化はない。系の外部に対して エネルギーや粒子の出入りがあり、平衡状態ではない。

- ・電子が流れている: 定常状態ではあるが、平衡状態ではない
- ・バイアス、温度分布、etc.: 熱平衡が不成立
- ・ $E_{\rm F}$ が一定という条件が使えない:化学平衡が不成立

- Boltzmannの輸送理論
- ・ 電荷(電流)連続の方程式

非平衡統計物理学

熱平衡状態の電子分布

統計分布関数: Fermi-Dirac分布関数 $f_0(E) = \frac{1}{1 + \exp[(E - E_{E0})/k_BT]}$

エネルギー *E* をもつ電子が占めることの D(E)できる状態数:状態密度 実際に何個の電子がエネルギー *E* の状 $n_0(E) = f_0(E)D(E)$ 態を占めているか?

非平衡状態: 統計分布関数f(E, r, k, t) を求めることが必要

 $f(E,\mathbf{r},\mathbf{k},t) = f_0(E) + f_1(E)$

ボルツマンの輸送方程式

Boltzmann equation

$$\frac{df}{dt} = \left(\frac{\partial f}{\partial t}\right)_{r,k} + \frac{dr}{dt} \nabla_r f + \frac{dk}{dt} \nabla_k f$$
$$\mathbf{F} = \hbar \frac{d\mathbf{k}}{dt} \qquad \mathbf{v}_{\mathbf{k}} = \frac{d\mathbf{r}}{dt}$$

外力として電場 E を考える場合

$$\frac{df}{dt} = \left(\frac{\partial f}{\partial t}\right)_{r,k} + v_k \nabla_r f - e \frac{E}{\hbar} \nabla_k f$$

熱電デバイス: 拡散電流 (熱拡散、密度拡散)

同じ材料の両端の温度を変える $T_{\rm H}, T_{\rm L}$ 電子は化学ポテンシャル ($E_{
m F}$) が均一になるように再分布

金属: 電子密度は T で変わらない 運動エネルギー ~ $E_F^0 + \frac{1}{2} m v_{th}^2$ $\langle v_x \rangle \sim \frac{1}{2} kT$ 温度による速度差により、高温側から低温側に拡散

半導体:電子密度 $N_C exp\left(-\frac{E_C-E_F}{kT}\right)$ 温度による電子密度差により、高温側から低温側に拡散

散乱の緩和時間近似

Boltzmann-Bloch equation (for steady state)

$$-\frac{f-f_0}{\tau} = \mathbf{v_k} \nabla_{\mathbf{r}} f + \frac{\mathbf{F}}{\hbar} \nabla_{\mathbf{k}} f$$
$$-\frac{f-f_0}{\tau} = \left(\frac{\partial f}{\partial t}\right)_{t,\mathbf{r},\mathbf{k}} + \mathbf{v_k} \nabla_{\mathbf{r}} f + \mathbf{v_k} \mathbf{F} \frac{\partial f}{\partial E}$$

$$f \sim f_0 - \tau \left(\frac{\partial f_0}{\partial t}\right)_{t,r,k} - \tau v_k \nabla_r f_0 - \tau v_k F \frac{\partial f_0}{\partial E}$$

電子伝導の基礎方程式

平衡状態のフェルミ準位: 電荷中性条件

$$\int_{E_C}^{\infty} D_C(E) f(E) dE + N_A^{-} = \int_{E_C}^{\infty} D_V(E) [1 - f(E)] dE + N_D^{+}$$

電位と電荷分布の関係:ポアソンの方程式

$$abla^2 \varphi(x) = rac{\rho(x)}{\varepsilon}$$

 $\rho(x) = -e[n(x) + N_A^-] + e[p(x) + N_D^+]$
 $n(x) = \int_{E_C}^{\infty} D_C(E)f(E)dE \quad p(x) = \int_{-\infty}^{E_V} D_V(E)[1 - f(E)]dE$

電荷の分布:輸送方程式

$$f \sim f_0 - \tau \left(\frac{\partial f_0}{\partial t}\right)_{t,\mathbf{r},\mathbf{k}} - \tau \mathbf{v}_{\mathbf{k}} \nabla_{\mathbf{r}} f_0 - \tau \mathbf{v}_{\mathbf{k}} \mathbf{F} \frac{\partial f_0}{\partial E}$$

バンド構造と電界 $\mathbf{E}_e = -\nabla_{\mathbf{r}} E_C$ 有効質量近似 $E - E_C = \frac{\hbar^2}{2m_e^*} \mathbf{k}^2$

$$f \sim f_0 - \tau \left(\frac{\partial f_0}{\partial t}\right)_{t,\mathbf{r},\mathbf{k}} - \tau \mathbf{v}_{\mathbf{k}} \nabla_{\mathbf{r}} f_0 - \tau \mathbf{v}_{\mathbf{k}} \mathbf{F} \frac{\partial f_0}{\partial E} = f_0 + e \tau \mathbf{v}_{\mathbf{k}} \mathbf{E} \frac{\partial f_0}{\partial E}$$

$$\mathbf{J} = -e \int \mathbf{v}_{\mathbf{k}} dk_{x} dk_{y} dk_{z}$$

= $-e \int \mathbf{v}_{\mathbf{k}} D(E) f(E) dE$
= $-e \int \mathbf{v}_{\mathbf{k}} D(E) \left[f_{0} + e\tau \mathbf{v}_{\mathbf{k}} \mathbf{E} \frac{\partial f_{0}}{\partial E} \right] dE$
= $-e \int \mathbf{v}_{\mathbf{k}} D(E) \left[e\tau \mathbf{v}_{\mathbf{k}} \mathbf{E} \frac{\partial f_{0}}{\partial E} \right] dE$

$$J_x = -e^2 \int v_x^2 \tau(E) D(E) \frac{\partial f_0}{\partial E} dE \cdot E_x = -\frac{e^2}{k_B T} \int v_x^2 \tau(E) D(E) f_0 (1 - f_0) dE \cdot E_x$$

$$\frac{\partial f_0}{\partial E} = \frac{1}{k_B T} f_0 (1 - f_0)$$

伝導度、平均緩和時間、移動度

$$\sigma_{xx} = -\frac{e^2}{k_B T} \int v_x^2 \tau(E) D(E) f_0 (1 - f_0) dE$$

$$= -\frac{2e^2}{3m_e^* k_B T} \int (E - E_0) \tau(E) D(E) f_0 (1 - f_0) dE$$

$$E - E_0 = \frac{1}{2} m_e^* v_k^2 = \frac{3}{2} m_e^* v_x^2$$

$$\sigma_{xx} = en \mu_{xx} = en \frac{e}{m_e^*} \langle \tau \rangle$$

$$n = \int D(E) f_0(E) dE$$

$$\langle \tau \rangle = -\frac{2e}{3} \int (E - E_0) \tau(E) D(E) \frac{\partial f_0}{\partial E} dE / \int D(E) f_0(E) dE$$

$$\mu_{xx} = \frac{e}{m_e^*} \langle \tau \rangle$$

伝導度、平均緩和時間、移動度

$$\sigma_{xx} = -\frac{e^2}{k_B T} \int v_x^2 \tau(E) D(E) f_0 (1 - f_0) dE$$

= $-\frac{2e^2}{3m_e^* k_B T} \int (E - E_0) \tau(E) D(E) f_0 (1 - f_0) dE$

$$E - E_0 = \frac{1}{2}m_e^* \mathbf{v_k}^2 = \frac{3}{2}m_e^* \mathbf{v_x}^2$$

$$\sigma_{xx} = en\mu_{xx} = en\frac{e}{m_e^*}\langle \tau \rangle$$

$$n = \int D(E) f_0(E) dE$$

$$\langle \tau \rangle = -\frac{2e}{3} \int (E - E_0) \tau(E) D(E) \frac{\partial f_0}{\partial E} dE \Big/ \int D(E) f_0(E) dE$$
$$\mu_{xx} = \frac{e}{m_e^*} \langle \tau \rangle$$

Transport theory: Relaxation time approx.

Carrier density

$$n_e = \int_{E_C}^{\infty} D_C(E) f_e(E) dE$$

Conductivity and Mobility

$$\sigma_{x} = en_{e} \left[\frac{\frac{e}{m_{e}^{*}} \langle \tau^{1} \rangle}{\frac{m_{e}^{*}}{m_{e}^{*}}} \longrightarrow \mathcal{H}_{drift} \right]$$

$$\left\langle \tau^{k} \right\rangle = -\frac{2}{3} \int_{E_{C}}^{\infty} (E - E_{m}) \tau(E)^{k} D_{C}(E) \frac{\partial f_{e}(E)}{\partial E} dE / n_{e}$$

$$\tau(E, T) = \tau_{0} T^{p} (E - E_{m})^{r-1/2}$$
例えば合金散乱では $p = 0, r = 1/2$

Hall effect: Boltzmann equation

太田英二、坂田亮著、半導体の電子物性光学、培風館 (2005)

$$\boldsymbol{J} = \frac{e^2 n}{m_e^*} \left[\left\langle \frac{\tau}{1 + (\omega_c \tau)^2} \right\rangle \boldsymbol{E} + \left(\frac{e}{m_e^*} \right)^2 \left\langle \frac{\tau^2}{1 + (\omega_c \tau)^2} \right\rangle \boldsymbol{B}(\boldsymbol{B} \cdot \boldsymbol{E}) + \frac{e}{m_e^*} \left\langle \frac{\tau^2}{1 + (\omega_c \tau)^2} \right\rangle \boldsymbol{E} \times \boldsymbol{B} \right]$$

When
$$B \cdot E = 0$$
, $\omega_c \tau \ll 1$
 $J = en\mu \left[\langle \tau \rangle E + \frac{e}{m_e^*} \langle \tau^2 \rangle E \times B \right] = \sigma \left[E + \frac{e}{m_e^*} \frac{\langle \tau^2 \rangle}{\langle \tau \rangle} E \times B \right]$
 $J_x = \sigma E_x + \sigma \mu \frac{\langle \tau^2 \rangle}{\langle \tau \rangle^2} E_y B_z$
 $J_y = \sigma E_y - \sigma \mu \frac{\langle \tau^2 \rangle}{\langle \tau \rangle^2} E_x B_z = 0 \Longrightarrow E_y = \frac{e}{m_e^*} \frac{\langle \tau^2 \rangle}{\langle \tau \rangle} E_x B_z$
 $J_z = \sigma E_z$
 $E_y = -\frac{\frac{F_H \mu}{\sigma} B_z J_x}{1 + (F_H \mu)^2 B_z^2} = -\frac{1}{en} B_z J_x$
 $R_H = -\frac{V_H}{I_x} \frac{d}{B_z}$ (for electron)
 $F_H = \frac{\langle \tau^2 \rangle}{\langle \tau \rangle^2}$: Hall factor $\mu_H = F_H \mu$: Hall mobility

Hall効果

 $R_{H} = F_{\text{Hall}} / qn \quad n_{Hall} = n_{e} / F_{Hall}$ $\mu_{Hall} = \mu_{drift} F_{Hall}$ Hall factor $F_{Hall} = \langle \tau^{2} \rangle / \langle \tau^{1} \rangle^{2} : 0.9 \sim 2$

$$\langle \tau^k \rangle = -\frac{2}{3} \int_{E_c}^{\infty} (E - E_m) \tau^k(E) D_c(E) \frac{\partial f_e(E)}{\partial E} dE / n_e$$

緩和時間のエネルギー依存性
=> ドリフト移動度とHall移動度のずれ
Hall因子 F_{Hall}

 $R_H = F_{Hall} / qn$ F_{Hall} : 散乱機構に依存

いろいろな移動度

・ドリフト移動度 (定義): μ_d = E / v_{drift}

・伝導度移動度: $\mu = \sigma / (en)$ どうやってnを測定?

・Hall移動度: Hall効果からHall係数R_Hを測定 $V_H = R_H I_x B_Z / d, R_H = 1 / en_{Hall} = \gamma / en$ $\mu_{Hall} = \sigma / (en_{Hall}) = \gamma \mu_d$ ($\gamma = 1 - 2$: Hall因子, 散乱因子)

•光学移動度:赤外・マイクロ波領域の自由電子吸収から測定

·MOSFET移動度

有効移動度、電界効果移動度、飽和移動度

·Time-of-flight (TOF) 移動度

パルス電圧・レーザー励起などで薄いシートキャリアを生成し、 対向電極に到達する時間から移動度を測定する

 $v = \mu E = \mu V/L, \Delta t = L / v: \mu_{TOF} = L^2/(V\Delta t)$

磁気抵抗効果移動度

Known from effective mass (free e⁻ approx.)

Mobility, conductivity
$$\mu = \frac{e\tau}{m_e^*}$$
 $\sigma = eN_{free}\mu$

Density of state function $M_{\rm C}$ is the degeneracy of LUMO

$$N(E) = M_{C} \frac{\sqrt{2}}{\pi^{2}} \frac{\sqrt{E - E_{C}}}{\hbar^{3}} m_{de}^{3/2}$$

Burstein-Moss shift ($E_{\rm F}$ of degenerated semiconductor) $\Delta E_g^{BM} = \frac{h^2}{m_{de}} \left(\frac{3N_e}{16\sqrt{2}\pi}\right)^{2/3}$

Effective density of state $N_{\rm C}, N_{\rm V}$

for isotropic CBM/VBM that does not have extra degeneracy other than spin, density-of-states effective mass m_{de} is equal to carrier effective mass m_{e}^{*} .

$$N_C = 2 \left(\frac{2\pi m_{de} k_B T}{h^2}\right)^{3/2} M_C$$

Thermal velocity $\frac{1}{2}m_{e}^{*}v_{th}^{2} = \frac{3}{2}k_{B}T$ $v_{th} = \sqrt{3k_{B}T/m_{e}^{*}}$ Fermi velocity $\frac{1}{2}m_{e}^{*}v_{F}^{2} = E_{F} - E_{C}$ $v_{F} = \sqrt{2(E_{F} - E_{C})/m_{e}^{*}}$

有効質量に与える影響: Band effective mass

有効質量に与える影響:電子一格子相互作用

電子はホストのイオンと相互作用する結果、 有効質量が重くなる => Polaron 相互作用が弱く、電子は局在化していない: Large polaron 相互作用が強く、電子は単位格子内に局在化: Small polaron

H. Frolich: Adv. Phys. 1954, 3, p. 325.

Termoelectrics 熱起電力

Thermoelectricity: Boltzmann equation 太田英二、坂田亮著、半導体の電子物性光学、培風館 (2005)

Boltzmann-Bloch equation

$$\frac{df(k)}{dt} = -\frac{F}{\hbar} \frac{\partial f(k)}{\partial k} - v_k \frac{\partial f(k)}{\partial r} - \frac{f(k) - f_0(k)}{\tau(k)}$$

$$v_k = \frac{d\varepsilon(k)}{dk}: \text{ group velocity} \Leftrightarrow v_p = \frac{\varepsilon(k)}{k}: \text{ phase velocity}$$
Steady-state $\frac{df(k)}{dt} = -\frac{F}{\hbar} \cdot \frac{\partial f(k)}{\partial k} - v_k \cdot \frac{\partial f(k)}{\partial r} - \frac{f(k) - f_0(k)}{\tau(k)} = 0$

Non-uniform T and chemical potential η : depend on position r $f(\mathbf{k}) - f_0(\mathbf{k}) = -\tau(\mathbf{k}) \left(\frac{F}{\hbar} \cdot \frac{\partial f(\mathbf{k})}{\partial \mathbf{k}} + \mathbf{v}_{\mathbf{k}} \cdot \frac{\partial f(\mathbf{k})}{\partial \mathbf{r}} \right)$ $= -\tau(\mathbf{k}) \left(e\mathbf{E} \cdot \frac{\partial \varepsilon(\mathbf{k})}{\partial \mathbf{k}} \frac{\partial f(\varepsilon)}{\partial \varepsilon} + \mathbf{v}_{\mathbf{k}} \cdot T\nabla \frac{\varepsilon - \eta}{T} \frac{\partial f(\varepsilon)}{\partial \varepsilon} \right)$ $= -\tau(\mathbf{k}) \frac{\partial f(\varepsilon)}{\partial \varepsilon} \mathbf{v}_{\mathbf{k}} \cdot \left(e\mathbf{E} + T\nabla \frac{\varepsilon - \eta}{T} \right)$

Thermoelectricity: Boltzmann equation 太田英二、坂田亮著、半導体の電子物性光学、培風館 (2005)

$$J = en \frac{\int (v_k \otimes v_k) \tau(k) \left(-\frac{\partial f(\varepsilon)}{\partial \varepsilon} \right) \left[eE + T \nabla \frac{\varepsilon - \eta}{T} \right] dk}{\int f_0(k) dk}$$
$$(v_k \otimes v_k) = (v_{k,i} v_{k,j}): \text{ Direct product of vectors}$$

$$\nabla \frac{\varepsilon - \eta}{T} = -\frac{\varepsilon - \eta}{T} \nabla T - \nabla \eta$$

Chemical potential η is a function of carrier density n(r) $J = \sigma \cdot E + en \frac{\langle \tau \rangle}{m_e^*} \left[\frac{1}{T} \left(\frac{\langle \tau \varepsilon \rangle}{\langle \tau \rangle} - \eta + T \frac{\partial \eta}{\partial T} \right) \nabla T + \frac{\partial \eta}{\partial n} \nabla n \right]$ $= \sigma \cdot E + \sigma \left[S \nabla T + \frac{1}{e} \frac{\partial \eta}{\partial n} \nabla n \right]$

$$S = \frac{1}{eT} \left[\left(\frac{\langle \tau \varepsilon \rangle}{\langle \tau \rangle} - \eta + T \frac{\partial \eta}{\partial n} \right) \right]$$

Seebeck coefficient

$$S = \frac{1}{eT} \left[\left(\frac{\langle \tau \varepsilon \rangle}{\langle \tau \rangle} - \eta + T \frac{\partial \eta}{\partial n} \right) \right]$$

$$S = -\frac{k}{e} \frac{\int \left(-\frac{\partial f}{\partial E} \right) D(E) v^2 \tau \left[\frac{E - E_F}{kT} \right] dE}{\int \left(-\frac{\partial f}{\partial E} \right) D(E) v^2 \tau dE} + \frac{1}{e} \frac{\partial E_F}{\partial T} \quad \text{Seebeck coefficient}$$

$$\tau = (m_e^*/2)^{1/2} l_0(T) E^{r-1/2}$$

Degenerated semi.: Free-electron like, single band, $\tau = \tau_0 + ((E - E_F)/E_F) \tau_1$

$$S \sim -\frac{k}{e} \frac{\pi^2}{3} \left(\frac{3}{2} + \frac{\tau_1}{\tau_0} \right) \frac{kT}{E_F}$$

Non-degenerated band:

$$S \sim -\frac{k}{e} \left(\frac{E_C - E_F}{kT} + r + 2 \right) = -\frac{k}{e} \left(\ln \frac{N_C}{N_e} + r + 2 \right)$$

$$S \sim +\frac{k}{e} \left(\frac{E_F - E_V}{kT} + r + 2 \right) = +\frac{k}{e} \left(\ln \frac{N_V}{N_h} + r + 2 \right)$$

Holes

Hopping conduction (small polaron): Entropy S

$$S = \frac{k}{e} \ln \left(\frac{n}{N - n} \right)$$

熱起電力(Seebeck係数)

$$S = \frac{1}{eT} \left[\left(\frac{\langle \tau \varepsilon \rangle}{\langle \tau \rangle} - \eta + T \frac{\partial \eta}{\partial n} \right) \right]$$
$$S = -\frac{k}{e} \frac{\int \left(-\frac{\partial f}{\partial E} \right) D(E) v^2 \tau \left[\frac{E - E_F}{kT} \right] dE}{\int \left(-\frac{\partial f}{\partial E} \right) D(E) v^2 \tau dE} + \frac{1}{e} \frac{\partial E_F}{\partial T} \quad \text{Seebeck}$$

縮退半導体:バンドが自由電子的な単一バンドで、τ=τ₀+((E-E_F)/E_F) τ₁の場合

$$S \sim -\frac{k}{e} \frac{\pi^2}{3} \left(\frac{3}{2} + \frac{\tau_1}{\tau_0} \right) \frac{kT}{E_F}$$

非縮退半導体:

$$S \sim -\frac{k}{e} \left(\frac{E_C - E_F}{kT} + r + 2 \right) = -\frac{k}{e} \left(\ln \frac{N_C}{N} + r + 2 \right)$$
$$S \sim +\frac{k}{e} \left(\frac{E_F - E_V}{kT} + r + 2 \right) = +\frac{k}{e} \left(\ln \frac{N_V}{N} + r + 2 \right)$$

$$\tau = \left(m_e^* / 2\right)^{1/2} l_0(T) E^{r-1/2}$$

|--|

正孔

ホッピング伝導 (small polaron): エントロピー輸送 $S = \frac{k}{e} \ln \left(\frac{n}{N-n} \right)$

G.H. Jonker, Philips Res. Repts 23 (1968) 131; Kamiya et al., Adv. Funct. Mater. 15, 968 (2004)

局在電子のSeebeck係数符号反転

局在状態でのVRH伝導の場合 (拡散係数をエネルギーに対して一定とする)。 Mottの式: $S = \frac{\pi^2}{3} \frac{k_B^2 T}{e} \left(\frac{d \ln \sigma(E)}{dE} \right)_{E=E_F}$ $\sigma(E) = e^2 D(E) D$

Measurement of electrical conductivity and mobilities

電気伝導度・移動度の測定

電気伝導度の測定

2端子の測定では、電線の直列抵抗、電極界面の接触抵抗を拾ってしまう 低抵抗試料では、抵抗を過大評価する

4 端子測定にすると、電極の接触抵抗の影響がない 電圧計の入力インピーダンス $Z_i >>$ 試料インピーダンス Z_s

非常に高抵抗の試料の場合

入力インピーダンス $Z_i >>$ 試料インピーダンス Z_s

・普通の電圧計 (DMMなど (Keithley 2001)、 Z_i~ 100MΩ): 電圧計に電流が流れる
 ・超高抵抗な電圧計 (Z_i >GΩ): エレクトロメータ、ピコアンメータ (Keithley 6517)

試料の抵抗が極端に高い場合

- ・ 電圧計が負ける: 電圧計や試料ホルダーを通って電流が流れる
- ・ 電圧計電極に静電容量が形成されて電圧降下

I.B. Valdes, Proc. IRE **42**, 420 (1954) F.M. Smits, The Bell System Technical Journal **37**, 711 (1958) S. Murashima, F. Ishibashi, Jpn. J. Appl. Phys. **9**, 1340 (1970)]

Van der Pauw法

L.J. van der Pauw, Philips. Res. Rep. 13 (1958) 1.

磁場を印加しないで、電極AB間に電流 I_{AB} を流し、電極CD間の電圧 V_{CD} を測定

 $R_{AB,CD} = V_{CD} / I_{AB}$ 電極BC間に電流 I_{BC} を流し、電極DA間の電圧 V_{DA} を測定

 $R_{BC,DA} = V_{DA}/I_{BC}$ 電極AC間に電流 I_{AC} を流し、試料面に垂直に磁束密度 B_z の磁場を印加 電極BD間に生じる電圧を V_{BD} A

$$\int R_{AC,BD} = V_{BD} / I_{AC}$$

$$\rho = \frac{\pi d}{\ln 2} \cdot \frac{(R_{AB,CD} + R_{BC,DA})}{2} \cdot f(R)$$

$$n = \frac{B}{q \cdot d \cdot \triangle R_{AC,BD}} \qquad \mu_{\text{Hall}} = \frac{d}{B_z} \cdot \frac{\triangle R_{AC,BD}}{\rho}$$

f(*R*):形状補正係数

 $\frac{\exp(\ln 2/f)}{2} = \cosh\left\{\frac{\ln 2}{f}\frac{R-1}{R+1}\right\}$

表2 Van der Pauw 法における形状補正係数 f

$R_{AB,CD} / R_{BC,DA}$	f	$R_{AB,CD} / R_{BC,DA}$	f
1.0	1.0	1.4	0.9903
1.1	0.9992	1.5	0.9860
1.2	0.9971	2.0	0.9603
1.3	0.9941	3.0	0.9067

van der Pauw法

L.J. van der Pauw, A method of measureing specific resistivity and Hall effect of discs of arbitrary shape, Phil. Res. Repts., **13**, 1 (1958)

It will be shown that the specific resistivity and the Hall effect of a flat sample of arbitrary shape can be measured without knowing the current pattern if the following conditions are fulfilled:

- (a) The contacts are at the circumference of the sample.
- (b) The contacts are sufficiently small.
- (c) The sample is homogeneous in thickness.
- (d) The surface of the sample is <u>singly connected</u>, i.e., the sample does not have isolated holes.

Van der Pauw 法 ◎ 電極の構成

(a) Preferred

Square or rectangle: contacts at the edges or inside the perimeter

(c) Not Recommended

Van der Pauw法によるHall電圧符号反転

Causes of incorrect carrier-type identification in van der Pauw-Hall measurements

Oliver Bierwagen,^{a)} Tommy Ive, Chris G. Van de Walle, and James S. Speck

APPLIED PHYSICS LETTERS 93, 242108 (2008)

Impedance methods

C-V法: Schottky 接合中の電位分布

C-V法によるキャリア極性, N_D, V_{bi}の評価 空乏層にたまっている電荷 $1/C^{2}$ $Q_{sc} = eN_D W = eN_D \left(\frac{2\varepsilon_s}{eN_D} (V_{bi} - V)\right)^{1/2}$ 接合容量=空乏層容量 $C = \frac{dQ_{sc}}{dV} = \left(\frac{e\varepsilon_s N_D}{2(V_{sc} - V)}\right)^{1/2} = \frac{\varepsilon_s}{W}$ 傾きからNn がわかる

 $N_D(x)$ に深さ方向分布がある場合

$$N_D(W) = \frac{2}{e\varepsilon_s} \left(\frac{dC^{-2}}{dV}\right)^{-1} = \frac{2C^3}{e\varepsilon_s} \left(\frac{dC}{dV}\right)^{-1}$$

$$W = \varepsilon_s / C$$

半導体評価技術 ^{河東田 隆 編著}

Arrhenius plot of conductivities perpendicular and parallel to film surface as a function of Ts

Hall effect

Hall効果

六端子Hallバー

図 3·24 Hall 効果の実験

四端子測定で抵抗率を測定 電圧端子(C,D)位置を確定する必要

・パターニングが必要
・キャリアの伝導経路をかなり限定できる
・四端子測定で抵抗率を測定
・複数のHall電圧端子の組み合わせで
信頼性を上げる

磁場反転、電流反転測定で誤差を相殺

Hall電圧電極がずれている 試料の∆RI だけ電圧がずれる

 $V_{\rm obs}^{+} = BIR_{\rm Hall}/t + I\Delta R$

・磁場を反転させて測定 $V_{obs}^{-} = -BIR_{Hall}/t + I\Delta^{P}$

 $=> (V_{obs}^{+} - V_{obs}^{-})/2 = -BIR_{Ha}$

 ΔR

異常Hall効果

Co-doped TiO₂ films grown on glass: Room-temperature ferromagnetism accompanied with anomalous Hall effect and magneto-optical effect

T. Yamasaki,¹ T. Fukumura,^{1,2,a)} Y. Yamada,¹ M. Nakano,¹ K. Ueno,³ T. Makino,³ and M. Kawasaki^{3,1,4}

APPLIED PHYSICS LETTERS **94**, 102515 (2009)

Optical mobility

自由電子吸収と光学伝導度

キャリア濃度nの物質で自由電子による光吸収

ITOの場合、nが2×10²¹cm⁻³を超えると急激に800nmの反射率が大きくなる

Free carrier absorption

自由電子吸収から何が分かるか

FCA解析: a-IGZO

annealed HQ

T&R spectra combined + Film / Substrate layers optical model Tauc-Lorentz model + Lorentz model (at $\sim E_G$) + Drude model Accuracy $\sim 2\% \Rightarrow \alpha = -\ln(0.98)/d \sim 900 \text{ cm}^{-1}$ (for d = 230 nm)

Band edge reproduced by a Tauc-Lorentz model FCA fit well to a Drude model with a single τ: Free electron-like transport

バンドフィリング効果 (Burstein-Moss shift)

バンドフィリング効果(BMシフト)

Field-effect mobility

電界効果移動度

電界効果トランジスタ(FET)の基本動作

トランジスタの基本機能 1. 増幅機能 ゲート電圧に電流が比例する領域を利用 2. スイッチ機能 ゲート電圧による大きな電流の変調を利用

バンドギャップ内欠陥とTFT特性

高性能TFTを作るための条件

$$I_{DS} = \frac{W}{L} \mu_{drift} C_g \left[\left(V_{GS} - V_{th} \right) V_{DS} - \frac{V_{DS}^2}{2} \right]$$

FET特性の解析: 飽和領域

$$V_{DS} > V_p = V_{GS} - V_{th}$$

$$I_{DS} = \frac{W}{2L} \mu C_{OX} (V_{GS} - V_{th})^2$$

$$I_{DS}^{1/2} = \sqrt{\frac{W}{2L}} \mu C_{OX} (V_{GS} - V_{th})$$

I_{DS}^{1/2} vs. V_{GS}をプロット V_{GS}軸切片: V_{th} 傾き: 飽和移動度 Saturation mobility, μ_{sat}

 I_{DS} (μA)

FET特性の解析:線形領域

$$I_{DS} = \frac{W}{L} \mu C_{OX} \left[(V_{GS} - V_{th}) V_{DS} - \frac{V_{DS}^2}{2} \right]$$

$$V_{DS} << V_{p} (V_{GS}) (e.g., << 0.1 V)$$

$$I_{DS} = \frac{W}{L} \mu C_{OX} V_{DS} (V_{GS} - V_{th})$$

$$I_{DS} = \frac{W}{L} \mu C_{OX} V_{DS} (V_{GS} - V_{th})$$

$$I_{DS} = \frac{W}{L} \mu C_{OX} V_{DS} (V_{GS} - V_{th})$$

$$I_{DS} = \frac{W}{L} \mu C_{OX} V_{DS} (V_{GS} - V_{th})$$

$$I_{DS} = \frac{W}{L} \mu C_{OX} V_{DS} (V_{GS} - V_{th})$$

$$I_{DS} = \frac{W}{L} \mu C_{OX} V_{DS} (V_{GS} - V_{th})$$

$$I_{DS} = \frac{W}{L} \mu C_{OX} V_{DS} (V_{GS} - V_{th})$$

有効移動度 (effective mobility): μ_{eff} 電界効果移動度 (field-effect mobility): μ_{FE}

$$\mu_{eff} = g_{DS} \frac{L}{WC_{OX}(V_{GS} - V_{th})}$$
$$dI_{DS}$$

$$g_{DS} = \frac{d r_{DS}}{d V_{DS}}$$
 Drain conductance

$$\mu_{FE} = g_m \frac{L}{W C_{OX} V_{DS}}$$

1 1

$$g_m = \frac{dI_{DS}}{dV_{GS}}$$
 Transconductance

電界効果移動度の電界(V_{GS})依存性

a-IGZO TFT / SiO₂/MoW/glass ¹

etch-stopper inverted-staggered

- 1. M.Kim et al., APL 90, 212114 (2007)
- 2. C.O. Chui, H. Kim, D. Chi, B.B. Triplett, P.C. McIntyre, K.C. Saraswat, IEDM (2002) p.437
- 3. K. Chen, H. C. Wann, P. K. Ko, and C. Hu, IEEE Electr. Dev. Lett., **17**, 202 (1996)

Space charge limited current (SCLC)

空間電荷制限電流

大電流条件での熱電子放出電流: 空間電荷制限電流(SCLC)(電子放出)

「荷電粒子ビーム工学」,コロナ社

真空に放出された電荷が形成する静電ポテンシャルが 無視できない場合

電子の速度 v(x), 真空中の静電ポテンシャル V(x)は x の関数

 $\frac{1}{2}mv(x)^{2} = eV$ 電流連続の条件 j(x) = en(x)v(x) = jPoissonの方程式 $\frac{d^{2}V(x)}{dx^{2}} = \frac{en_{e}(x)}{\varepsilon_{0}} = \frac{J}{\varepsilon_{0}} \left(\frac{m_{e}}{2eV}\right)^{1/2}$ $\frac{dV}{dx}$ を両辺にかけて積分 $\left(\frac{dV(x)}{dx^{2}}\right)^{1/2} = \frac{4J}{\varepsilon_{0}} \left(\frac{m_{e}}{2e}\right)^{1/2} V^{1/2} + C$

最大の電流が流れる条件 E(0) = 0 として解く

$$V = \left(\frac{3}{4}\right)^{4/3} \left(\frac{4J}{\varepsilon_0}\right)^{2/3} \left(\frac{m_e}{2e}\right)^{1/3} x^{4/3}$$
$$J = \frac{4\varepsilon_0}{9} \left(\frac{2e}{m_e}\right)^{1/2} \frac{V^{3/2}}{d^2} \quad \begin{array}{c} \text{Child-Langmuirの式}\\ \text{Ohmの法則は成立しない} \end{array}$$

空間電荷制限電流 vs Ohmic電流

空間電荷制限電流(SCLC)

外部から注入された電荷が物質内の 自由電荷密度に比べて無視できない場合 $v(x) = \mu \frac{dV}{dx}$ $J(x) = en_e(x)v(x) = J$ $\frac{d^2 V(x)}{dx^2} = \frac{e n_e(x)}{\varepsilon} = \frac{J}{\varepsilon \mu} \left(\frac{dV}{dx}\right)^{-1}$ $J = \frac{9}{8} \varepsilon \mu \frac{V^2}{\lambda^3}$ SCLC with trap state: $h(E) = \frac{H_t}{E_t} \exp\left(-\frac{E}{E_t}\right)$ $J = e^{1-l} \mu_p N_v \left(\frac{2l+1}{l+1}\right)^{l+1} \left(\frac{l}{l+1}\frac{\varepsilon}{H_t}\right)^l \frac{V^{l+1}}{d^{2l+1}}$

 $l = T_c / T = E_t / k / T$

V. Kumar, S.C. Jain, A.K. Kapoor, J. Poortmans, R. Mertens, *Trap density in conducting organic semiconductors determined from temperature dependence of J-V characteristics*, JAP **94** (2003) 1283.

C12A7e⁻/Cu_xSe OLEDの例

Yanagi et al., J. Phys. Chem. C 113 (2009) 18379

いろいろな移動度

・ドリフト移動度 (定義): μ_d = E / v_{drift}

・伝導度移動度: $\mu = \sigma / (en)$ どうやってnを測定?

・Hall移動度: Hall効果からHall係数R_Hを測定 $V_H = R_H I_x B_Z / d, R_H = 1 / en_{Hall} = \gamma / en$ $\mu_{Hall} = \sigma / (en_{Hall}) = \gamma \mu_d$ ($\gamma = 1 - 2$: Hall因子, 散乱因子)

•光学移動度:赤外・マイクロ波領域の自由電子吸収から測定

·MOSFET移動度

有効移動度、電界効果移動度、飽和移動度

·Time-of-flight (TOF) 移動度

パルス電圧・レーザー励起などで薄いシートキャリアを生成し、 対向電極に到達する時間から移動度を測定する

 $v = \mu E = \mu V/L, \Delta t = L / v: \mu_{TOF} = L^2/(V\Delta t)$

磁気抵抗効果移動度

Electronic conduction in polycrystals

多結晶半導体の伝導

多結晶半導体の電子輸送理論

Ellmer et al., Thin Solid Films 516 (2008) 4620

ナノワイアデバイスによる少数粒界の伝導

J.Y.W. Seto, *The electrical properties of polycrystalline silicon films*, J. Appl. Phys. 46 (1975) 5247.

Double-Schottky barriercontrolled transport in poly-Si

Black: experimental data **Red:** fitting results

 $E_{a}=10$ meV-80meV

Kamiya et al., MRS Proc. 664, A16.2 (2001)

Ea=20meV

10

Distribution in poly-Si GB potential height (measured using 20-50nm wide nanowires) 20 $N_{\rm D} = 1 \times 10^{19} {\rm cm}^{-3}$ 60 **Ledueuco** 40 30 20 Frequency 212 **As-deposited** Hot H₂O vapor annealed $V_{\rm B} = 20 - 200 \, {\rm meV}$ $V_{\rm B} = 20 - 28 \, {\rm meV}$ 5 100 38 to 56 56 to 74 74 to 92 92 to 110 10 to 128 28 to 146 46 to 164 64 to 182 82 to 200 20 to 28 28 to 38 36 to 44 44 to 52 52 to 60 68 to 76 68 to 76 84 to 92 84 to 92 20 to 38 Activation energy Ea / meV Activation energy Ea / meV 150 10015 400 80 275K 300 100 10 60 Current / nA 100 -100 200 Current / nA 50 100 200 0 -20 -50 -5 **50K** -40 -200-60 -100 -10 -300 -150 <u>-</u> -0.3 -4000.2 0.3 -0.3 -0.2 -0.1 $0.1 \quad 0.2 \quad 0.3 \quad -0.3 \quad -0.2 \quad -0.1 \quad 0 \quad 0.1 \quad 0.2 \quad 0.3$ -0.2 -0.1 -0.3 -0.2 -0.1 0 0.1 0 0.1 0.2 0.3 0 Voltage / V

Voltage / V

Voltage / V

T. Kamiya et al, JVSTB 21, 1000(2003)

Voltage / V

DC mobility (Hall) vs in-grain mobility (FCA)

T. Sameshima, K. Saitoh, N. Aoyama, M. Tanda, M. Kondo, A. Matsuda, S. Higashi, Analysis of free-carrier optical absorption used for characterization of microcrystalline silicon films, Sol. Energy Mater. Sol. Cells 66 (2001) 389

P- / B-doped mc-Si:H: 100 W RF PECVD, 180°C, SIH4/PH3,B2H6/H2 ELA: 28 ns XeCl excimer laser, 160 to 360 mJ/cm², 5 pulses

PECVD多結晶Siの微構造とHall移動度

Electronic conduction in amorphous

アモルファス半導体における 電子伝導

アモルファス半導体研究の初期の疑問

Blochの定理

・電子が散乱されずに移動できるのは、完全周期系に限られる

金属電子論

 バンドギャップはBZ端において進行波と反射波が定在波を作るために 生じる

- ・なぜアモルファス物質でバンドギャップが生じるか?
- ・なぜアモルファス半導体で電子伝導が起こるか?
- アモルファス半導体では有効質量の概念はナンセンスか?
- •高移動度のアモルファス半導体は存在するか?

a-Si:Hの電気伝導度とキャリア輸送

alue of dark conductivity σ , measured value of activation l $E_{\rm f}$ for a-Si:H layers, produced by PECVD on glass, in d N_{B2H6}/N_{SiH4} (for *p*-type layers). Values of σ and *h* d edge ($E_{\rm c}$, $E_{\rm v}$) and the Fermi level $E_{\rm f}$, where the s pe layers according to,⁴ assuming thereby a constan in $E_{\rm s}$ has been assumed. The equivalent bandgap of a-Si be 1.7 eV, while drawing the graph; this corresponds

・縮退伝導はしない
 ・移動度 < ~1 cm²/Vs

活性化エネルギーが ~0.2 eV で飽和: 縮退伝導に入らない 局在すそ状態密度が大きい ドナー準位がNegative-U移動度 < ~1 cm²/Vs

W.E. Spear and P.G. LeComber, Solid State Commun. 17 (1975) 1193

Disordered MQWの透過

ポテンシャルゆらぎと局在

田中一宣他著、アモルファスシリコン、オーム社

図 4・4 バンド端でのポテンシャルゆらぎの単純化モデルとバンドテイル状態

乱れのある結晶における電子の透過

・背景の結晶部分は電子の透過だけに寄与するので 差分だけ考える

 ・乱れた構造による散乱と干渉の結果、定在波をつくる アンダーソン局在
2種類のホッピング伝導

・最近接ホッピング

キャリアが局在状態に捕獲され、熱的に移動度端以上に励起されて伝導に寄与する

$$\sigma = \frac{\sigma_0}{T} \exp\left(-\frac{\Delta E}{k_B T}\right)$$

捕獲キャリアの熱励起はフォノンによって行われるため、キャリアの移動は常に格子変 形を伴う

Small polaron と同義

⇔ Large polaron:

キャリアは格子変形を伴って移動する。 ただし局在化しておらず、平均自由行程が結晶周期より長い ※元素半導体以外での電子伝導は多かれ少なかれ、 すべてlarge polaron

・ **可変長ホッピング** (広範囲ホッピング)

(Variable-range hopping: VRH) キャリアが局在状態に捕獲され、別の局在状態ヘトンネル伝導する 局在状態のエネルギーに分布があることを考慮するため、ホッピングと呼ばれる

Small polaron

$$S = \pm \frac{k}{e} \ln \left(2 \frac{N-n}{n} \right)$$

$$\sigma = \frac{\sigma_0}{T} \exp\left(-\frac{E_H}{k_B T}\right)$$

$$\sigma_0 = \frac{gNc(1-c)e^2a^2v}{k_B}$$

$$c: n/N$$
a: ホッピング長
v: ホッピングに寄与する
光学フォノン周波数

J. Han, M. Shen and W. Cao, Appl. Phys. Lett., 82 (2003) 67

B.J. Ingram, T.O. Mason, R. Asahi, K. T. Park, A.J. Freeman, Phys. Rev. B 64 (2001) 155114

H. L. Tuller and A. S. Nowick, J. Phys. Chem. Solids 38, 859 (1977)

J. Nell, B. J. Wood, S. E. Dorris, and T. O. Mason, J. Solid State Chem. 82, 247 (1989)

H. Böttger and V. V. Bryksin, Hopping Conduction in Solids (VCH Verlagsgesellschaft, Weinheim, Germany, 1985).

A. R. Long, in Hopping Transport in Solids, edited by M. Pollak and B. I. Shklovskii (North-Holland, Amsterdam, 1991).

C12A7:e⁻のポーラロン伝導

Mott's variable-range hopping (VRH)

トンネルによって移動できるほど欠陥準位密度が高い

=>トンネル伝導では温度依存性がでない

・欠陥準位にエネルギー分布がある

小さい温度依存性がでる ホッピング距離が温度によって変わる

d: Dimension of the conduction region

 $r = \frac{1}{4}$ for 3D VRH

S.R. Elliott, Physics of amorphous materials, Longman, New York, (1983). 嶋川晃一、林浩司、森垣和夫、広範囲ホッピング伝導-その大いなる問題点-、固体物理 29 (1994) 11

Mott's variable-range hopping (VRH)

トンネルによって移動できるほど欠陥準位密度が高い

=>トンネル伝導では温度依存性がでない

・欠陥準位にエネルギー分布がある

小さい温度依存性がでる ホッピング距離が温度によって変わる

S.R. Elliott, Physics of amorphous materials, Longman, New York, (1983). 嶋川晃一、林浩司、森垣和夫、広範囲ホッピング伝導-その大いなる問題点-、固体物理 29 (1994) 11

Hall, Seebeck符号異常

アモルファス(乱雑系)半導体

Hall電圧, Seebeck係数符号がキャリア極性と逆転する p型でR_Hが負 : pn sign anomaly (pn符号異常) n型でR_Hが正、p型でR_Hが負: pn sign double anomaly (二重符号異常)

pn型の判定方法

- ・デバイス(TFT,FET)応用を考慮すると・・・ 容量測定 問題点:結構良い半導体・デバイスでないと測定できない
- ・光電子分光法によるフェルミ準位測定 問題点: 表面バンドベンディング

分解能(普通のUPSで~0.1 eV)

Weak-localization

P.A. Lee and T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985) through X.D. Liu, E.Y. Jiang, and Z. QW. Li, Low temperature electrical transport properties of B-doped ZnO films, J. Appl. Phys. 102, 073708 (2007) Kaveh, M., and Mott, N.F. J. Phys. C: Solid State Phys. 14, L177 (1983)

$$\sigma(T) = \sigma_0 + \eta T^{p/2} + \lambda T^{1/2}$$

a phonon scattering model (p = 1)

P.A. Lee and T.V.V Ramakrishnan, Rev. Mod. Phys. 57 (1985) 287 W.Noun, B.Berini, Y.Dumont, P.R.Dahoo, N.Kelle, JAP 102 (2007) 063709

3D limit

 $T^{p/2}$: Weak localization (WL), p=2 electron-electron, p=3 electron-phonon interaction T^{1/2}: renomralization of effective electron-electron interaction (REEI) bT²: low-T e-e Boltzmann termp $(T) = \frac{1}{\sigma_0 + \eta T^{p/2} + \lambda T^{1/2}} + bT^2$ 2D limit ln T for WL and REEI $\rho(T) = \frac{1}{\sigma_0 + a \ln T} + bT^2$ **Condition required** $\Lambda \sim \lambda_{F}$

Fermi wavelength

Electron mean free path

 $\lambda_F = 2\pi / (3\pi^2 n)^{1/3}$ $\Lambda = h / (\rho n e^2 \lambda_F)$

Percolation conduction

Percolation伝導

Mott's variable-range hopping (VRH) ?

・ただしVRHでは、σ₀として常識的な値より数桁高い値が出ることが多い(前指数項問題)

- ・そのため、 σ_0 の値を議論の対象にしないということがacceptable
 - =>VRHモデルを否定できるかどうかは、他の状況を含めて判断する
- ・一般に、Hall理論と両立しないと考えられている

(cm-3.eV-1) $N(E_{\rm F})$ α^{-1} T₀ (K) σ_0 (S·cm⁻¹) (cm) σ。より計算 Taより計算 7 × 1019 2 × 10²¹ 4×10-6 48 1.9×10² c-Si(イオン打ち込み) 7×10-7 3×1019 2 × 10²⁴ 1.9×10* $c-Ge(N_{2}=1.5\times10^{17} \text{ cm}^{-3})$ 1.9 × 10⁺ 3×10^{26} 6 × 1018 1×10-7 3.5×10^{7} 9.6×10³ a-Si 1×10-7 8×1018 3×1037 2.8×107 3×109 $a-Si_{100-x}Au_x$ (x=2.4) 4 × 1053 7 × 1017 4×10⁻⁸ V2Os-P2Os ガラス 2.8×109 2 × 1017 1×1025 1×10-7 7 × 10²⁰ 1.8×10⁴ PCBCO 薄膜 2.9×10⁵

第1表 Mottの広範囲ホッピング(1/4乗則).

嶋川晃一、林浩司、森垣和夫、広範囲 ホッピング伝導ーその大いなる問題点 ー、固体物理 29 (1994) 11

杉原硬、広範囲ホッピング伝導、固体 物理 12 (1977) 15 参考文献; シリコン単結晶(c-Si)[文献 26)], ゲルマニウム単結晶(c-Ge)[文献 4)], アモルファスシリコン(a-Si)[文献 23)], アモルファスシリコンー金(a-Si_{97.4}Au_{2.4})[文献 24)], V₂O₅-P₂O₅ ガラス[文献 21)], 高温超伝 導体(PCBCO)薄膜[文献 27)]. 上記 N(E₇)はすべて Mott の式(§2)で計算された.

Sir Nevill Mott also pointed ...

e.g. in Conduction in Non-Crystalline Materials (1993)

Conduction in granular metals | 35

In this section we have used elementary arguments to obtain the $T^{1/4}$ and $T^{1/2}$ laws. For a more accurate percolation method, which gives almost the same results, see Ambegaokar *et al.* (1971) and Pollak (1972). More recently Sivan *et al.* (1988) and others have argued that the percolative-like nature of the charge transport in these systems can give rise to a nonlinear averaging process that may cause a negative magnetoresistance. Effects on thin films are anticipated and have been investigated experimentally (Ovadyahu 1986; Erydman *et al.* 1992).

VRH everywhere in poor semiconductors ???

Carrier transport in a-IGZO

Degenerate conduction both in $N_{\rm e}$ and $\mu_{\rm e}$ at $N_{\rm e} > 4 \times 10^{18}$ cm⁻³

$$\mathcal{N} - \exists \mathcal{V} - \hat{\mathcal{Y}} \exists \mathcal{Y} + \hat{\mathcal{Y}} = \frac{2e^2}{3m_e} \int (E - E_m)\tau(E)D(E)\frac{\partial f_0}{\partial E}dE = en_e \frac{e}{m_e^*} \langle \tau^1 \rangle$$

$$g(E) = \exp\left\{-(E - E_{center})^2 / E_0^2\right\}$$

$$p(E) = (\pi E_0^2)^{-1/2} \int_E^{\infty} g(E')dE'$$

$$p(E) = (\pi E_0^2)^{-1/2} \int_E^{\infty} g(E')dE'$$

$$n_e = \int_{E_c}^{\infty} D_c(E)f_e(E)dE$$

$$F_{Itadl} = \langle \tau^2 \rangle / \langle \tau^1 \rangle^2$$

$$n_{Hall} = n_e / F_{Hall} \quad \mu_{Hall} = \mu_e F_{Hall}$$

Hall results vs percolation model: a-IGZO

T-1/4 behavior and potential barriers

Kamiya et al., APL 2010 **a-IGZO**

局所と大域平均自由行程

Kamiya et al., APL 2010

移動度のあいまいさ

G = *enμ* 任意性なく測定できるのは σ だけ **ドリフト移動度**: μ_d = μ_{drift}/E 物理的な定義 **伝導度移動度**: σ = *enμ* μは n の選択によって変わる n: Hall効果 => Hall移動度 光吸収 => 光学移動度 電界誘起 => 電界効果移動度

非均質材料の場合は? $N_{free} = N_t \exp(-E_t/kT)$ $\mu = \mu_{ext}$ \longrightarrow N_{free} $\mu = 0$ N_r, E_t $\mu = \sigma / N_{free}$ or σ / N_B $\mu = \sigma / N_t$ or σ / N_{free}