Optimization, fitting, and least-squares method

最適化、フィッティング、最小二乗法

神谷利夫 東京工業大学科学技術創成研究院フロンティア材料研究所

東工大講義資料 / Tokyo Tech Lecture Materials (English+Japanese) http://conf.msl.titech.ac.jp/Lecture/python/index-numericalanalysis.html pythonによる最小二乗法・最適化問題 GUIプログラミング (Japanese) LSQ/Optimization GUI programing (Japanese) http://conf.msl.titech.ac.jp/Lecture/python/tutorial-optimize/index-python-optimize-

Linear lest squares method (/LSQ) 線形最小自乗法

Approximation of many sample points: Minimization (Optimization) (多数の標本点の近似: 最小化問題)

How to determine most plausible parameters *a* and *b* if observed data (x_1, y_1) , \cdots (x_n, y_n) follow f(x) = a + bx, \bigotimes Error ε_i should be considered: $y_i = f(x_i) + \varepsilon_i$

Fundamental idea: Determine a and b so as to minimize (maximize) a target function S (e.g., error residual function (残差関数))

Minimax method (ミニマックス法) $S = \Sigma |f(x_i) - y_i|$ Least-squares (LSQ) method (最小自乗法): $S = \Sigma (f(x_i) - y_i)^2$ $S = \Sigma (a + bx_i - y_i)^2$ $dS/da = 2\Sigma (a + bx_i - y_i) = 2an + 2b\Sigma x_i - 2\Sigma y_i = 0$ $dS/db = 2\Sigma x_i (a + bx_i - y_i) = 2a\Sigma x_i + 2b\Sigma x_i^2 - 2\Sigma x_i y_i = 0$ $\begin{pmatrix} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{pmatrix} \binom{a}{b} = \binom{\sum y_i}{\sum x_i y_i}$

Even for $f(x) = a + bx + cx^2 + \cdots$, only one matrix operation can give a final solution

Minimax approximation (ミニマックス近似) Minimize $\max_{a \le x \le b} |g(x) - f(x)|$

/LSQ: Polynomial 線形最小二乗法: 多項式

 $f(x) = \sum_{k=0}^{n} a_{k} x^{k} \qquad S = \sum_{i=1}^{N} \left(y_{i} - \sum_{k=0}^{n} a_{k} x_{i}^{k} \right)^{2} \frac{dS}{da_{l}} = -2 \sum_{i=1}^{N} x_{i}^{l} \left(y_{i} - \sum_{k=0}^{n} a_{k} x_{i}^{k} \right) = 0$ $\sum_{k=0}^{n} \sum_{i=1}^{N} a_{k} x_{i}^{k+l} = \sum_{i=1}^{N} y_{i} x_{i}^{l} \qquad (l = 0, 1, \cdots, N)$ $\begin{pmatrix} n & \sum x_{i} & \sum x_{i}^{2} & \cdots & \sum x_{i}^{N} \\ \sum x_{i} & \sum x_{i}^{2} & \sum x_{i}^{3} & \sum x_{i}^{3} & \sum x_{i}^{N+1} \\ \sum x_{i}^{2} & \sum x_{i}^{3} & \sum x_{i}^{4} & \sum x_{i}^{N+2} \\ \vdots & \ddots & \\ \sum x_{i}^{N} & \sum x_{i}^{N+1} & \sum x_{i}^{N+2} & \sum x_{i}^{2N} \end{pmatrix} \begin{pmatrix} a_{0} \\ a_{1} \\ a_{2} \\ \vdots \\ a_{N} \end{pmatrix} = \begin{pmatrix} \sum y_{i} \\ \sum y_{i} x_{i} \\ \sum y_{i} x_{i}^{2} \\ \vdots \\ \sum y_{i} x_{i}^{N} \end{pmatrix}$

ILSQ: General functions
線形最小二乗法: 一般関数の場合
$$f(x) = \sum_{k=1}^{n} a_k f_k(x) \quad S = \sum_{i=1}^{N} \left(y_i - \sum_{k=1}^{n} a_k f_k(x_i) \right)^2 \\ \frac{dS}{da_i} = -2\sum_{i=1}^{N} f_i(x_i) \left(y_i - \sum_{k=1}^{n} a_k f_k(x_i) \right) = 0$$
$$\begin{pmatrix} \sum_{i=1}^{f_1(x_i)f_1(x_i)} & \sum_{i=1}^{f_2(x_i)f_2(x_i)} & \sum_{i=1}^{f_1(x_i)f_3(x_i)} & \cdots & \sum_{i=1}^{f_1(x_i)f_N(x_i)} \\ \sum_{i=1}^{f_2(x_i)f_1(x_i)} & \sum_{i=1}^{f_2(x_i)f_2(x_i)} & \sum_{i=1}^{f_2(x_i)f_3(x_i)} & \sum_{i=1}^{f_2(x_i)f_3(x_i)} & \sum_{i=1}^{f_2(x_i)f_3(x_i)} & \sum_{i=1}^{f_2(x_i)f_3(x_i)} & \sum_{i=1}^{f_2(x_i)f_3(x_i)} \\ \vdots \\ \sum_{i=1}^{f_1(x_i)f_1(x_i)} & \sum_{i=1}^{f_2(x_i)f_2(x_i)} & \sum_{i=1}^{f_2(x_i)f_3(x_i)} & \sum_{i=1}^{f_2(x_i)f_3(x_i)f_3(x_i)} \\ \vdots \\ \sum_{i=1}^{f_1(x_i)f_1(x_i)} & \sum_{i=1}^{f_2(x_i)f_2(x_i)} & \sum_{i=1}^{f_2(x_i)f_3(x_i)} & \sum_{i=1}^{f_2(x_i)f_3(x_i)f_3(x_i)} \\ \vdots \\ \sum_{i=1}^{f_1(x_i)f_1(x_i)} & \sum_{i=1}^{f_2(x_i)f_2(x_i)} & \sum_{i=1}^{f_1(x_i)f_3(x_i)} & \sum_{i=1}^{f_2(x_i)f_3(x_i)f_3(x_i)} \\ \vdots \\ \sum_{i=1}^{f_1(x_i)f_1(x_i)} & \sum_{i=1}^{f_2(x_i)f_2(x_i)} & \sum_{i=1}^{f_2(x_i)f_3(x_i)} & \sum_{i=1}^{f_2(x_i)f_3(x_i)f_3(x_i)} \\ \vdots \\ \sum_{i=1}^{f_1(x_i)f_1(x_i)} & \sum_{i=1}^{f_2(x_i)f_2(x_i)} & \sum_{i=1}^{f_2(x_i)f_3(x_i)} & \sum_{i=1}^{f_2(x_i)f_3(x_i)f_3(x_i)} \\ \vdots \\ \sum_{i=1}^{f_1(x_i)f_1(x_i)} & \sum_{i=1}^{f_2(x_i)f_2(x_i)} & \sum_{i=1}^{f_2(x_i)f_3(x_i)} & \sum_{i=1}^{f_2(x_i)f_3(x_i)} \\ \vdots \\ \sum_{i=1}^{f_2(x_i)f_3(x_i)f_2(x_i)} & \sum_{i=1}^{f_2(x_i)f_3(x_i)f_3(x_i)} & \sum_{i=1}^{f_2(x_i)f_3(x_i)f_3(x_i)} \\ \vdots \\ \sum_{i=1}^{f_2(x_i)f_3(x_i)f_2(x_i)} & \sum_{i=1}^{f_2(x_i)f_3(x_i)} & \sum_{i=1}^{f_2(x_i)f_3(x_i)f_3(x_i)} \\ \vdots \\ \sum_{i=1}^{f_2(x_i)f_3(x_i)f_2(x_i)} & \sum_{i=1}^{f_2(x_i)f_3(x_i)} & \sum_{i=1}^{f_2(x_i)f_3(x_i)f_3(x_i)} \\ \vdots \\ \sum_{i=1}^{f_2(x_i)f_3(x_i)f_2(x_i)} & \sum_{i=1}^{f_2(x_i)f_3(x_i)f_3(x_i)} & \sum_{i=1}^{f_2(x_i)f_3(x_i)} \\ \vdots \\ \sum_{i=1}^{f_2(x_i)f_3(x_i)f_3(x_i)} & \sum_{i=1}^{f_2(x_i)f_3(x_i)f_3(x_i)} & \sum_{i=1}^{f_2(x_i)f_3(x_i)f_3(x_i)} \\ \vdots \\ \sum_{i=1}^{f_2(x_i)f_3(x_i)f_3(x_i)} & \sum_{i=1}^{f_2(x_i)f_3(x_i)f_3(x_i)} & \sum_{i=1}^{f_2(x_i)f_3(x_i)f_3(x_i)} \\ \vdots \\ \sum_{i=1}^{f_2(x_i)f_3(x_i)f_3(x_i)} & \sum_{i=1}^{f_2(x_i)f_3(x_i)} & \sum_{i=1}^{f$$

If f(x) is linear with respect to fitting parameters, final solution is obtained by one matrix operation 係数に関して線形であれば、1度の行列計算で最終解が得られる $ex. f(x) = a + b \log x + c/x$ f(x, y) = a + b xy + cy/x

Ex of /LSQ: Lattice spacing of triclinic lattice
(三斜晶結晶の面間隔)

$$d_{hkl}^{-2} = |\mathbf{G}_{hkl}|^2 = |h\mathbf{a}^* + k\mathbf{b}^* + l\mathbf{c}^*|^2$$

 $\overline{d_{hkl}^{-2}} = S_{11}h^2 + S_{22}k^2 + S_{33}l^2 + 2S_{12}hk + 2S_{23}kl + 2S_{31}lh$
 $S_{11} = \mathbf{a}^* \cdot \mathbf{a}^* = b^2c^2\sin^2 \alpha/V^2$
 $S_{22} = c^2a^2\sin^2 \beta/V^2$
 $S_{12} = \mathbf{a}^* \cdot \mathbf{b}^* = abc^2(\cos\alpha\cos\beta - \cos\gamma)/V^2$
 $S_{23} = a^2bc(\cos\beta\cos\gamma - \cos\alpha)/V^2$
 $S_{31} = ab^2c(\cos\gamma\cos\alpha - \cos\beta)/V^2$
 $V = abc\sqrt{1 - \cos^2\alpha - \cos^2\beta - \cos^2\gamma + 2\cos\alpha\cos\beta\cos\gamma}$
The form of d_{hkl}^{-2} is a linear function with respect to S_{ij} .
1. S_{ij} is obtained by /LSQ
2. $S_{ij} =>$ Reciprocal lattice parameters $(a^*, b^*, c^*, \alpha^*, \beta^*, \gamma^*)$
3. $=>$ Lattice parameters $(a, b, c, \alpha, \beta, \gamma)$

Self-consistent method 自己無撞着法

Least-squares method

- Fitting to a function having linear parameters
- Final solution is obtained just by one matrix operation
- Unique solution

Four or higher order polynomial, Transcendental equation (超越方程式)

- Difficult to have an analytical solution
- Even numerical analysis cannot give final solution by one-cycle calculation

=> Iterative calculation (反復計算)

Error

Example of simple self-consistent (SC) calc

A simple case: Solve g(x) = 0SC method is applicable by converting to x = g(x) + x = f(x)*Note: not efficient nor stable for many cases*

Simple procedure:

Initial value x_0 1st iteration : $x_1 = f(x_0)$ 2nd iteration: $x_2 = f(x_1)$ Difficult to converge: Diverge, Oscillation (収束しにくい: 発散、振動)

Mixing factor (混合係数) k_{mix} : Stabilize convergence Initial value x_0 1st iteration : $x_1 = f(x_0) \implies x_1' = (1 - k_{mix}) x_0 + k_{mix} x_1$ 2nd iteration: $x_2 = f(x_1') \dots$

Illustrative explanation of SC

SC: Convergence process

Example of SC: Diode with series resistance

$$I = I_0 \left[\exp\left(\frac{e}{nkT} \left(V - RI\right)\right) - 1 \right]$$

Repeat

$$I_{i} = I_{0} \left[\exp\left(\frac{e}{nkT} \left(V - RI_{i-1}\right)\right) - 1 \right]$$

until $abs(I_i = I_{i-1}) < EPS$ is achieved

- E.g., initial voltages would be chosen as V/2 for the diode and the R
- This SC is not so stable;
 mixing factor k should be adjusted

For sequential calculations of I - Vcharacteristic, e.g., V from 0.0 to 1.0, using a preconverged result for the initial value of the next V will enhance convergence.

例えばVを順次変えてI-V特性を計算するような 場合、すでに収束した値を次のVにおける初期値 として利用すると早く収束できる。

i	Ι	Ical error		I0=	1.E-12	Α
0	2	-1E-12	2	n=	1	
1	1.8	-1E-12	1.8	T=	300	Κ
2	1.62	-1E-12	1.62	R=	1	ohm
3	1.458	-1E-12	1.458	V=	1	
4	1.3122	-1E-12	1.3122			
5	1.18098	-1E-12	1.18098	k=	0.1	
6	1.062882	-9.1E-13	1.06288			
7	0.956594	4.31E-12	0.95659			
8	0.860934	2.09E-10	0.86093			
9	0.774841	5.77E-09	0.77484			
10	0.697357	1.14E-07	0.69736			
11	0.627621	1.66E-06	0.62762			
12	0.564859	1.86E-05	0.56484			
13	0.508375	0.000163	0.50821			
14	0.457554	0.00115	0.4564			
15	0.411914	0.006655	0.40526			
16	0.371388	0.031631	0.33976			
17	0.337412	0.116849	0.22056			
18	0.315356	0.272927	0.04243			
19	0.311113	0.321305	0.01019			
20	0.312132	0.308953	0.00318			
21	0.311814	0.312754	0.00094			
22	0.311908	0.311626	0.00028			
23	0.31188	0.311965	8.5E-05			
24	0.311888	0.311863	2.5E-05			
25	0.311886	0.311893	7.6E-06			
26	0.311887	0.311884	2.3E-06			

First-principles calculation: Self-consistent field (SCF,自己無撞着) calculation

Hamiltonian of one-electron quantum equation includes wave functions

$$\left\{-\frac{1}{2}\nabla_l - \sum_m \frac{Z_m}{r_{lm}} + \sum_m \int \frac{\rho_m(\mathbf{r}_m)}{r_{lm}} d\mathbf{r}_m + V_{Xl}(\mathbf{r}_l)\right\} \phi_l(\mathbf{r}_l) = \varepsilon_l \phi_l(\mathbf{r}_l)$$

- First-step calculation requires electron density guessed / assumed ρ_{ini} : e.g., by uniform density, sum of atomic electron density,,,
- Electron density ρ_{fin} is calculated the solved wave functions, but ρ_{fin} would be different from ρ_{ini}

 ρ_{ini} must be equal to ρ_{fin} , otherwise these loss physical meaning

SCF cycyle

<mark>Repeat until ρ_{fin} = ρ_{ini}</mark>

- More appropriate ρ_{new} is guessed from ρ_{fin} and $\rho_{ini},$ and repete the above calculations

ex.:
$$\rho_{\text{new}} = \rho_{\text{ini}} + k_{\text{mix}}(\rho_{\text{fin}} + \rho_{\text{ini}})$$

 k_{mix} : Mixing factor

A parameter to suppress divergence of the SCF calculation close to 1 would be easily diverged, close to 0 causes slow convergence

Example: SCF/structure relaxation by VASP

🔳 tkamiy	a@csrv0:~/Wo	ork/LaCrAsO/S	pinPolariz	ed		X
ファイル(<u>E</u>) 編集(<u>E</u>)	表示(<u>∨</u>) 端末	(<u>T</u>) タブ(<u>B</u>) イ	ヽルプ(<u>H</u>)			
1 F=24922201E+03 E	0=24922201E+03	d E =249222E+	03 mag= 1	17-6753	(
curvature: 0.00 expec	t dE= 0.000E+00 d:	E for cont linese	arch 0.000E+	+00		
trial: gam= 0.00000 g(F)= 0.620E+00 g(S)= 0.305E-01 ort	= 0.000E+00	(trialstep =	0.100E+01	
search vector abs, valu	ie= 0.650E+00					
bond charge predicted						
N <u>E</u>	dE	d eps	ncg	rms	rms(c)	
DAV: 1 -0.249256423	264E+03 -0.2492	6E+03 -0.54781E	+01 3528 (0.200E+01	0.196E+00	
DAV: 2 -0.249670978	228E+03 -0.4145	5E+00 -0.52988E	+00 4416 (0.955E+00	0.161E+00	
DAV: 3 -0.249672461	360E+03 -0.1483	1E-02 -0.53814E	-01 4640 (0.336E+00	0.153E+00	
DAV: 4 -0.249667045	995E+03 0.5415	4E-02 -0.45192E	-01 4632 (0.183E+00	0.129E+00	
DAV: 5 -0.249662986	402E+03 0.4059	6E-02 -0.16171E	-01 4664 (0.134E+00	0.113E+00	
DAV: 6 -0.249664501	455E+03 -0.1515	1E-02 -0.86520E	-02 4520 (0.152E+00	0.943E-01	
DAV: 7 -0.249658663	938E+03 0.5837	5E-02 -0.36669E	-02 4626 (0.103E+00	0.315E-01	
DAV: 8 -0.249657255	947E+03 0.1408	0E-02 -0.11030E	-02 4432 (0.529E-01	0.406E-01	
DAV: 9 -0.249656661	683E+03 0.5942	6E-03 -0.64937E	-03 3424 (0.480E-01	0.219E-01	
DAV: 10 <u>-0.249654538</u>	0.2123 0.2123	7E-02 -0.11755E	-03 2528 (0.225E-01	0.151E-01	
DAV: 11 -0.249654612	437E+03 -0.7443	2E-04 -0.11566E	-03 2520 (0.213E-01		
2 F=24965461E+03 E0=24965461E+03 d E =432599E+00 mag= 18.2912						
trial-energy change:	-0.432599 1 .ord	er -0.416777	-0.650072 -	-0.183481		
step: 1.3105(harm= 1	.3932) dis= 0.06	748 next Energy=	-249.683568	3 (dE=-0.462E	+00)	
bond charge predicted	bond charge predicted					
N <u>E</u>	dE	d eps	ncg	rms	rms(c)	
DAV: 1 -0.249658788	237E+03 -0.2496	6E+03 -0.53760E	+00 3536 (0.623E+00	0.599E-01	=
DAV: 2 -0.249698102	900E+03 -0.3931	5E-01 -0.48908E	-01 4528 (0.303E+00	0.671E-01	
						-

Typical iteration of SC calculation

Find the solution of $f(x, \rho(x)) = 0$: Case this is easily done if $\rho(x)$ is provided

- 1. Assum $\rho(x)$ and solve $f(x, \rho(x)) = 0$ to get approximate x_i
- 2. Calculate $\rho(x_i)$ with the obtained $x_{i,j}$ solve $f(x, \rho(x_i)) = 0$, and get improved approximation x_{i+1}
- 3. Rpeat 1-2 so as to decrease |ρ(x_{i+1}) − ρ(x_i)|, |x_{i+1} − x_i| to required accuracy
 Self-consistent approach (自己無動着計算)

May be diverged if the obtained x_i ' is used for x_{i+1}

=> Stabilize converged using mixing factor (混合係数) k_{mix} Initial x_0 First iteration: $x_1 = f(x_0) => x_1' = (1 - k_{mix}) x_0 + k_{mix} x_1$ Next iteration: $x_2 = f(x_1') \dots$

Problems of SC calculations

- Some solutions would not be obtained (収束しない解があり得る)
 f'(x) < 1 must be satisfied at the solution
 to obtain the solution of x = f(x)
 => Conversion of the equation may help, but not always
- Convergence is not stable mixing factor may improve

For many cases, use another method such as Newton method

Cases SC method is effective

Initial values close to the solution Effect of SC parameters is small to the equation (自己無撞着変数の方程式への影響が小さい) SC parameters have good convergence

(自己無撞着変数の収束特性が良く、予測できる場合)

Transcendental equation 超越方程式の解法

Newton-Raphson method

Effect of dumping factor (収束過程の比較) $f(x) = \exp(x) - 3x = 0$ (initial x = 0) Exact 0.619061

Newton-Raphson (Dumping factor = 0)

0.5 1 2 0.610059654958962 0.110059654958962 3 0.61899677974154 0.00893712478257794 4 0.619061283355313 6.4503613773092e-005 5 0.619061286735945 3.38063244722622e-009 0.619061286735945 -1.94296000199483e-016 6 Newton-Raphson (Dumping factor = 0.1) 0.476190476190476 1 2 0.597901649246081 0.121711173055605 3 0.617090542717403 0.0191888934713221 4 0.618900291486661 0.00180974876925825 5 0.619048316423879 0.000148024937217564 0.619060243007723 6 1.19265838440254e-005 7 0.619061202754359 9.59746635487409e-007 8 0.619061279978579 7.72242198569211e-008 9 0.619061286192231 6.21365241490959e-009 10 0.619061286692197 4.99965669237101e-010 11 0.619061286732425 4.0228535713285e-011 Newton-Raphson (Dumping factor = 1.0) 0.33333333333333333 1 0.485235618882813 2 0.15190228554948 3 0.556317491275292 0.0710818723924794 4 0.589692022113926 0.0333745308386341 5 0.605333177012923 0.0156411548989961 0.612649553494255 0.00731637648133212 6 7 0.616067929129785 0.00341837563553035 8 0.617664103982484 0.00159617485269905 9 0.00074509558101794 0.618409199563502 10 0.618756961315507 0.000347761752005284 11 0.618919262817103 0.000162301501596124 12 0.618995007056658 7.57442395542543e-005

Effect of dumping factor: Convergence process $f(x) = \exp(x) - 3x = 0$ (initial x = 0) Exact 0.619061

NR: Newton-Raphson method df: Dumping Factor

Case Newton method fails

 $f(x) = \tan^{-1}(10x)$ initial x = 0.1

Case for convergence

i	x	f(x)	df/dx	dx
0	0.1	0.7854	5	-0.1571
1	-0.05708	-0.5187	7.54257	0.06877
2	0.011686	0.11633	9.86527	-0.0118
3	-0.00011	-0.0011	9.99999	0.00011
4	1.15E-10	1.2E-09	10	-1E-10

Case Newton method fails

 $f(x) = \tan^{-1}(10x)$ initial x = 0.15

Diverged ($\lambda = 0$)

i	x	f(x)	df/dx	dx
0	0.15	0.98279	3.07692	-0.3194
1	-0.16941	-1.0375	2.58404	0.40152
2	0.232112	1.164	1.56553	-0.7435
3	-0.51141	-1.3777	0.36827	3.74095
4	3.229546	1.53984	0.00958	-160.76
5	-157.529	-1.5702	4E-06	389644
6	389486.7	1.5708	1.1E-12	-1E+12

$x_{k+1} = x_k - f(x_k) / (f'(x_k) + \lambda)$ \lambda: Dumping Factor

Stabilize convergence

by choosing $\lambda(\lambda = 1)$

•					
i		x	f(x)	df/dx	dx
	0	0.15	0.98279	3.07692	-0.2411
	1	-0.09106	-0.7387	5.46675	0.11422
	2	0.023161	0.2276	9.49088	-0.0217
	3	0.001466	0.01466	9.99785	-0.0013
	4	0.000133	0.00133	9.99998	-0.0001
	5	1.21E-05	0.00012	10	-1E-05
	6	1.1E-06	1.1E-05	10	-1E-06
	7	1E-07	1E-06	10	-9E-08
	8	9.09E-09	9.1E-08	10	-8E-09
	9	8.27E-10	8.3E-09	10	-8E-10

Semiconductor statistics (半導体統計): Calc. procedure under equilibrium

- 1. Determine parameters (*e.g.*, m_e^*) and related constants (N_c , D_{c0} etc)
- 2. Calculate density-of-states (DOS) function, D(E)
- 3. Consider 'Charge Neutrality Condition (電荷中性条件)' at 0 K
- 4. At thermal equilibrium, $E_{\rm F}$ is independent of position. Draw a band diagram and obtain the energy levels of conduction band minimum (CBM) and valence band maximum (VBM), $E_{\rm C}(x)$ & $E_{\rm V}(x)$

5. Calculate extra charges
$$\rho_e(x)$$
 and $\rho_h(x)$ by
 $\rho_e(x) = N_e \exp(-(E_{CBM}(x) - E_F) / k_B T)$
 $\rho_h(x) = N_v \exp(-(E_F - E_{VBM}(x)) / k_B T)$

6. Solve Possison equation self-consistently (5 and 6) $d^{2}E_{CBM}(x)/dx^{2} = e(-\rho_{e}(x)+\rho_{h}(x)+N_{D}^{+}(x)-N_{A}^{-}(x))/\epsilon$

フェルミ準位: 価電子帯、アクセプターを無視できる場合

$$f_{e}(E, E_{F}) = \frac{1}{1 + \exp[(E - E_{F})/k_{B}T]}$$
$$D_{e}(E) = \frac{\sqrt{2}}{\pi^{2}} \frac{m_{de}^{3/2}}{\hbar^{3}} \sqrt{E - E_{C}}$$

 $E_{\rm C} - E_{\rm F} E_{\rm D} - E_{\rm F}, >> k_{\rm B}T$ $N_e = \int_{E}^{\infty} D(E) f_e(E) dE \sim N_C \exp\left(-\left(E_C - E_F\right) / k_B T\right)$ $N_{D}^{+} = N_{D} [1 - f_{e} (E_{D}, E_{E})] \sim N_{D} \exp((E_{D} - E_{E}) / k_{P} T)$ $N_a = N_D$ $\exp(2E_{E}/k_{R}T) = N_{D}/N_{C}\exp((E_{C}+E_{D})/k_{R}T)$ $E_{F} = \frac{E_{C} + E_{D}}{2} + \frac{k_{B}T}{2} \log(N_{D} / N_{C})$

How to calculate Fermi level $E_{\rm F}$

T=	300	к
EF=	0	eV
Nc=	5.20E+18	cm-3
Dc=	1.41 E+21	
Ec=	0	e∨
Nv=	5196000000	cm-3
Dv=	1.41 E+22	
Ev=	-1.1	eV
ED=	-7.00E-02	eV
ND=	1.00E+19	cm-3
WD=	2.00E-02	eV
a2=	1.73E+03	
AD=	2.35E+20	

How to calculate
$$E_{\mathbf{F}}$$
: Illustrative solution
 $N_e = \int_{E_C}^{\infty} D_C(E) f_e(E, E_F) dE$ $N_h = \int_{E_C}^{\infty} D_V(E) f_h(E, E_F) dE$
 $N_D^+ = N_D [1 - f_e(E_D, E_F)]$ $N_A^- = N_A [1 - f_h(E_A, E_F)]$
 $f_h(E, E_F) = 1 - f_e(E, E_F)$

Plot $\Delta Q = (N_{\rm A}^- + N_{\rm e}) - (N_{\rm D}^+ + N_{\rm h})$ w.r.t. $E_{\rm F}$ and find $\Delta Q = 0$

Bisection method (二分法): Monotonic func(単調関数)

Solution of f(x) = 0 for monotonic function f(x)

- 1. Start from a range $[x_0, x_1]$ where $f(x_0) < 0 \& f(x_1) > 0$ (or $f(x_0) > 0 \& f(x_1) < 0$)
 - * Solution exist in this range for a monotonic function
- 2. Solve the equation by the following iterative procedure

Case
$$f(x_0) < 0$$
 and $f(x_1) > 0$: Judge by $f(x_0) \cdot f(x_1) < 0$
1. $x_2 = (x_0 + x_1) / 2.0$
2. If $f(x_2) > 0$ ($f(x_0) \cdot f(x_2) < 0$), x_1 is replaced with x_2
If $f(x_2) < 0$ ($f(x_1) \cdot f(x_2) < 0$), x_0 is replaced with x_2
3. Solution x_2 is obtained when $|x_1 - x_0|$, $|f(x_1) - f(x_0)|$ becomes less than EPS

Fermi level in semi.: python program

Program: EF-T-semiconductor.py

http://conf.msl.titech.ac.jp/Lecture/StatisticsC/EF-T-semiconductor.html Usage: python EF-T-semiconductor.py EA NA ED ND Ec Nv Nc

Run: python EF-T-semiconductor.py 0.05 1.0e15 0.95 1.0e16 1.0 1.2e19 2.1e18

$$\begin{split} & E_c = 0, E_c = 1.0 \text{ eV} \ (= \text{band gap}) \\ & E_A = 0.05 \text{ eV}, N_A = 10^{15} \text{ cm}^{-3}, \\ & E_D = 0.95 \text{ eV}, N_D = 10^{16} \text{ cm}^{-3} \\ & N_c = 1.2 \text{x} 10^{19} \text{ cm}^{-3} \\ & N_v = 2.1 \text{x} 10^{18} \text{ cm}^{-3} \end{split}$$

E_F by bisection method: Convergence procedure

Initial range: $[E_1, E_2] = [E_V = 0, E_C = E_g]$ Find $\Delta Q = (N_A^- + N_e) - (N_D^+ + N_h) = 0$

After 30 times iterations

 $E_{\rm F} = [0.9985173589, 0.9985173599]$ d $Q = [-3 \times 10^8, 8 \times 10^8]$

How to calculate E_F : Newton-Raphson

Use initial value $E_0 = (E_V + E_C) / 2.0$ and find $\Delta Q = (N_A^- + N_e) - (N_D^+ + N_h) = 0$

After 30 times iterations $E_{\rm F} = 0.998517354556472$ $dQ = -5 \times 10^9$

Solution of multi-parameter simultaneous equations

Solve $f_l(x_k) = 0$ $f_l(x_k + \delta x_k) \sim f_l(x_k) + \sum_{k'} \delta x_{k'} \frac{\partial f_l(x_k)}{\partial x_{k'}} = 0$ $\begin{pmatrix} f_{1,1} & f_{1,2} & \cdots & f_{1,N} \\ f_{2,1} & f_{2,2} & & f_{2,N} \\ \vdots & & \ddots & \vdots \\ f_{n,1} & f_{n,N} & \cdots & f_{n,N} \end{pmatrix} \begin{pmatrix} \delta x_1 \\ \delta x_2 \\ \vdots \\ \delta x_N \end{pmatrix} = - \begin{pmatrix} f_1(x_k) \\ f_1(x_k) \\ \vdots \\ f_n(x_k) \end{pmatrix}$ $f_{l,k'}(x_k) = \frac{\partial f_l(x_k)}{\partial x_{k'}}$ Unique solution may be obtained when n = N

一意的に解ける可能性があるのはn = Nの時

- For many practical problems:
- 1. Data are much larger than the number of parameters (N < n)
- **2.** Target: Find x_k to satisfy small $f_l(x_k)$

=> *e.g.* LSQ is more appropriate

Non-linear (NL) optimization 非線形最適化

NL optimization of crystal structure: Illustrative approach 安定構造: 図解による解法

Calculate total energy by quantum calculations by varying a lattice parameter ex. Si

$$E = E_{\min} + 1/2B_0 (V/V_0)^2$$

B_0 (GPa) = 87.57 GPa (exp: 97.88 GPa)

Ex.: Deconvolution of powder XRD peak peakfit.exe

Incorporate the intensity ratio from $K\alpha_1$ and $K\alpha_2$ at 2:1

ZnS Powder(orig	ginal).TXT - CurveFit 🛛 🗕 🗖 🗙
ファイル(<u>F)</u> 編集(<u>E)</u> 表示(<u>V</u>) <u>O</u> ption ヘルプ(<u>H</u>)	
	Bye
Input: I¥Samples¥ZnS Powder(original).TXT Path Ed	D:\Programs\CurveFit\CurveFit2013\Samples\ZnS Powder(orig
PFC: Samples¥ZnS Powder(original)#0pfc Path Ed	100000 -
Output: D:¥Programs¥CurveFit¥CurveFit201: Path Ed	
Optimize Region: 46 - 49 ViewRng V Output Region: 46 - 49 ViewRng V	80000 -
Add Peak Delete Peak Clear Peaks Peak Search	
0: 47.4687 88924 0.0963 0.388 1.000 💌	
0 Position 47.4687	≥ ⁶⁰⁰⁰⁰ –
C(Total) 88923.9 🔹 🔽 OPT Save <u>P</u> FC	
Gauss Fraction 0.387785	F 40000 -
FWHM Ratio	10000
C(Gauss) 34483.35456 OPT Log Redraw	
FWHM(Gauss) 0.09053555	20000 -
C(Lorentz) 0.0963353	
Background Others	
b0 170.272 → OPT L(K-a): 1.54056 A	46.8 47 47.2 47.4 47.6 47.8 48
b1 5.71438 → ♥ OPT (K=2)/(K=1) 0.5	Diffraction angle 2Theta / deg
b2 0 OPT Qrange 5	< > >
へルプを表示するには [F1] を押してください。	

Ex.: Deconvolution of powder XRD peak peakfit-scipy-minimize.py

.....

Profile models used for spectroscopy Lorentz function

$$I_{L}(x) = \frac{1}{1 + [(x - x_{0})/w]^{2}}$$

w: half width at half maximum

Gauss function

$$I_G(x) = \frac{1}{a_w w \pi^{1/2}} \exp\left\{-\left[\left(x - x_0\right)/(a_w w)\right]^2\right\}$$
$$a_w = (\ln 2)^{-1/2} = 0.832554611$$

Voigt function:

E.g., observed is convolution of sample spectrum $I_{\rm L}(x)$ and apparatus function $I_{\rm G}(x)$

$$I_V(x) = \int_{-\infty}^{\infty} I_G(x') I_L(x-x') dx'$$

$$=\frac{a_{V}}{\pi}\int_{-\infty}^{\infty}\frac{\exp(-x'^{2})}{a_{V}^{2}+(x-x')^{2}}dx$$

Pseudo-Voigt function:

Simplified Voigt function

$$I_{PV}(x) = f_G I_G(x) + (1 - f_G) I_L(x)$$

$$f_G: Gauss fraction$$

Multiple parameter Newton-Raphson method

Extend to multiple parameters: Minimize $F(x_i)$

 $f_k(x_l) = \partial F(x_l) / \partial x_k = 0$

Iteration: $f_k(x_l + \delta x_l) \sim f_k(x_l) + \sum_{k'} \delta x_{k'} \partial f_k(x_l) / \partial x_{k'} = 0$

$$\begin{aligned} x_{l,1} &= x_{l,0} - (\partial f_k(x_l) / \partial x_{k'})^{-1} (f_k) = x_{l,0} - (F''_{kk'})^{-1} (F'_k) \\ F''_{kk'} &= \frac{\partial^2 F(\mathbf{x})}{\partial x_k \partial x_{k'}} \quad \text{Hessian matrix} (\wedge \forall \forall \forall \forall h) \\ (\wedge \forall \forall \forall \forall \forall h) \in \mathbb{R}, \end{aligned}$$

Hessian matrix is not always positive definite (正定値であるとは限らない) (Maximum, Saddle point 極大値、鞍点) => F" dose not always gives decreasing direction

Convert *F***" to positive definite and suppress divergence**

 $x_{l,1} = x_{l,0} - (F''_{kk}, + \lambda I)^{-1}(F'_{k})$ \lambda: Dumping Factor

Steepest Descend (SD) method (最急降下法)

矢部博,工学基礎 最適化とその応用,数理工学社 (2006)

Search minimum only by first derivatives. Simplest one among differential methods

• SD: S^2 would decrease in the vector $-(df / dx_i)dx_i$

 $x_i^{(i+1)} = x_i^{(i)} - \alpha(df/dx_i)$

 α_k may be a small constant step or determined by a line search method

ex. in right figure:

 $S^2 = f(x_i) = 5x_1^2 + x_2^2$, initial $x_1 = 0.7, x_2 = 1.5$

Newton method

One cycle calculation provides the final solution for quadratic problems 楕円問題の場合は一度目の計算で最適値に到達

SD method

- $\alpha = 0.3$: Diverged (not shown in the graph)
 - 0.2, 0.15: Converged, but oscillated
 - **0.1:** Reach final solution by one cycle calculation
 - 0.01: Not oscillated, but slowly converged

Problem: If S² is highly anisotropic, the SD direction would be different largely from the minimization

direction S² が大きく非対称な場合、最急勾配方向は最小値方向とは 大きく異なることがある

=> Conjugate Gradient (CG) method (共役勾配法)

Steepest Descend method

矢部博,工学基礎 最適化とその応用,数理工学社 (2006)

Effective way: α is determined by line search (直線探索法)

Without direct search 2.5 1.5 0.1 0.15 Newton 0.01 **k=0.2** ′ ∠ 0. 0.5 -0.5 0.5

By direct search

SD method in Deep Learning

Conjugate Gradient method(共役勾配法)

矢部博,工学基礎 最適化とその応用,数理工学社 (2006)

Vectors *u* and *v* satisfy $u^t A v = 0$ for a matrix *A*: *u* and *v* and conjugate with each other

 For quadratic function, repetition of the conjugate direction will find the minimum in finite cycles if exact line search is employed

共役な探索方向に沿って正確な直線探索を実行 => 有限回の反復で2次関数の最小解に到達

Case contour is a circle, one cycle calculation reaches the minimum 等高線が円の場合、一回の探索で最小値に到達できる

Conjugate vectors and ellipsoido – circle conversion $u^{T}P^{T}Pv = u^{T}Av = 0$

- 1. Give initial value x_0
- 2. Initial direction *d* is determined by SD $\mathbf{d} = -\nabla f$
- 3. Find x_{k+1} using appropriately chosen α_k $x_{k+1} = x_k + \alpha_k d_k$ α_k may be a small constant step

or determined by a line search method

- 4. Search direction is updated by $\mathbf{y}_{k} = \nabla f(\mathbf{x}_{k+1}) - \nabla f(\mathbf{x}_{k})$ $\mathbf{d}_{k+1} = -\nabla f(\mathbf{x}_{k+1}) + \frac{\nabla f(\mathbf{x}_{k+1})^{T} \mathbf{y}_{k}}{\mathbf{d}_{k}^{T} \mathbf{y}_{k}} \mathbf{d}_{k}$ 5. Denot 2. A to use the correction
 - **5. Repeat 3 4 to reach convergence**^{*k*} As the freedom of cg directions is the number of parameters (n_{param}) , need to go back to **2** to reset d_{k} at some interval (typically n_{param} , necessary for $n_{\text{param}} = 2$).

Marquart method (マーカート法)

Minimize a square sum of *m* functions $f_i(x_i)$ with *N* parameters

$$F(x_i) = \sum_{j=1}^m f_j(x_i)^2$$

Approximate by

$$f_j(x_i + \delta x_i) \sim f_j(x_i) + \left(\frac{\partial f_j}{\partial x_k}\right) (\delta x_i) = f_j(x_i) + \mathbf{A} \delta x_i \qquad A_{jk} = \frac{\partial f_j}{\partial x_k}$$

$$F(x_{i} + \delta x_{i}) \sim F(x_{i})^{2} + 2\sum_{j,k} f_{j}A_{jk}\delta x_{k} + \sum_{j,k,k'} A_{jk}A_{ik'}\delta x_{k}\delta x_{k'}$$
$$\frac{\partial F(x_{i})}{\partial \delta x_{k}} \sim 2\sum_{j} \left(A_{jk}f_{j} + \sum_{k} A_{ik}A_{jk}\delta x_{j}\right) = 0$$
$$\delta x = -\left(\mathbf{A}^{\mathsf{t}}\mathbf{A}\right)^{-1}\mathbf{A}^{\mathsf{t}}(f_{j}) \quad \mathbf{Gauss-Newton method}$$

Levenberg-Marquart method $\delta x = -(\mathbf{A}^{\mathsf{t}}\mathbf{A} + \lambda I)^{-1} \mathbf{A}^{\mathsf{t}}(f_j)$ $\delta x = -(\mathbf{A}^{\mathsf{t}}\mathbf{A} + \lambda \operatorname{diag}(\mathbf{A}^{\mathsf{t}}\mathbf{A}))^{-1} \mathbf{A}^{\mathsf{t}}(f_j)$

λ: dumping factor

e.g. chosen proportional to diagonal sum of A^tA

Comparison http://conf.msl.titech.ac.jp/Lecture/python/index-numericalanalysis.html optimize-sd-cg2d-linesearch.py, optimize-newton-raphson2d.py From (-1.0 -1.0) cg simple From (0.0 0.0) cg simple

2 $^{-1}$ -2 -3 -3 -2 From (0.0 0.0) Newton 1 $^{-1}$ -2 -3 -3 -2

From (0.0 1.0) SD armijo

Features of NL optimization

• Newton-Raphson method:

Use second derivatives (Hessian matrix)

Fast convergence, easily diverged, complex program

- Steepest Descent:
 - Use first derivatives only

Simple program, Slower convergence than NR and CG

- Conjugate Gradient:
 - Use conjugate direction for efficient search

Better convergence than NR, faster than SD, complex program

• Marquart:

Use first derivatives of $f_j(x_i)$

Simple program, Slower convergence than NR

• Simplex:

Trial and error with a pre-determined selections of next candidate parameters

Very slow but good convergence

Simplex method (単体法, Amoeba法)

服部力、名取亮、小国力監修、Fortranによる数値計算ソフトウェア、丸善株式会社(1989年)

Simplex: Polyhedron formed by (n+1) vertexes in n-dimension space (単体: n次元空間で(n+1) 個の頂点が作る多面体)

Minimize $F(x_i)$

- 1. (n+1) initial values x_i $(i = 1, 2, \dots, n+1) =>$ Sort $F(x_i)$ so that $F(x_i) > F(x_{i'})$ (i < i') $x_h = x_1, x_l = x_{n+1}$
- 2. Average except the maximum vertex x_i $x_G = \sum_{i=2}^{n} x_i / n$
- 3. New x will be examined along the line $x_1 x_G$ by the following selections
- (i) Reflection (鏡映) : $x_{\mathbf{R}} = (1+\alpha)x_{\mathbf{G}} \alpha x_{\mathbf{1}}$ ($\alpha > 0, ex. 1.0$) (ii) Expansion (拡大) : $x_{\mathbf{E}} = \gamma x_{\mathbf{r}} + (1-\gamma)x_{\mathbf{G}}$ ($\gamma > 0, ex. 2.0$) (iii) Contraction (収縮) : $x_{\mathbf{C}} = \beta x_{\mathbf{1}} + (1-\beta)x_{\mathbf{G}}$ ($0 < \beta < 1, ex. 0.5$) (iv) Reduction (縮小) : $x_{\mathbf{RD}} = (x_{\mathbf{1}} + x_{\mathbf{I}}) / 2$
- 4. Replace x_1 with the x in (i) (iv) that firstly satisfies $F(x) < F(x_1)$
- 5. Repeat 2 4

Simplex method (単体法, Amoeba法)

南茂夫 編著、科学計測のための波形データ処理、CQ出版 (1986年)

Simplex: Polyhedron formed by (n+1) vertexes in n-dimension space (単体: n次元空間で(n+1) 個の頂点が作る多面体)

Minimize $F(x_i)$

1. (*n*+1) initial values \mathbf{x}_i (*i* = 1, 2, · · · , *n*+1) => Sort $F(\mathbf{x}_i)$ so that $F(\mathbf{x}_i) > F(\mathbf{x}_i)$ (*i* < *i*') 2. Average except the maximum vertex \mathbf{x}_i $x_G = \sum_{i=2}^{i=2} x_i / n$

3. New x will be examined along the line $x_1 - x_G$ by the following selections

- (i) Reflection (鏡映): $x_{R} = x_{1} + \alpha(x_{G} x_{1})$ (ex. $\alpha = 2$)(ii) Expansion (拡大): $x_{E} = x_{1} + \beta(x_{G} x_{1})$ (ex. $\beta > 2$)(iii) Reduction-Reflection (縮小鏡映) : $x_{CR} = x_{1} + \gamma(x_{G} x_{1})$ (ex. $1.0 < \gamma < 2.0$)(iv) Reduction: $x_{CW} = x_{1} + \delta(x_{G} x_{1})$ (ex. $0 < \delta < 1.0$)
- 4. Replace x_1 with the x in (i) (iv) that firstly satisfies $F(x) < F(x_1)$
- 5. Repeat 2 4

Notes for NL optimization: Local minimum

- Solutions may be more than one
- Final solution is not obtained by one step calculation
- Convergence must be confirmed
- Confirm the solution is the global minimum (大域最小値)
 ⇔ Often fall in a local minimum (局所極小値)

eter

Notes for NL optimization: Over-fitting

MR-TwoCarriermodel.py (to be uploaded for Lab only web) e.g. in APL 107, 182411 (2015) $(B) = Bo(a) = \frac{1}{2} \frac{(a)}{(a)}$

$$\rho_{xx}(B) = \operatorname{Re}(\rho) = \frac{1}{e} \frac{(n_h \mu_h + n_e \mu_e) + (n_h \mu_e + n_e \mu_h) \mu_h \mu_e B^2}{(n_h \mu_h + n_e \mu_e)^2 + (n_h - n_e)^2 \mu_h^2 \mu_e^2 B^2},$$

$$\rho_{yx}(B) = -\operatorname{Im}(\rho) = \frac{B}{e} \frac{(n_h \mu_h^2 - n_e \mu_e^2) + (n_h - n_e) \mu_h^2 \mu_e^2 B^2}{(n_h \mu_h + n_e \mu_e)^2 + (n_h - n_e)^2 \mu_h^2 \mu_e^2 B^2}.$$

of parameters must be larger than # of constraints,

of parameters: four n_h , μ_h , n_e , μ_e # of constraints: three

For parabolic $\rho_{xx}(B)$: $a_{xx}^0 = \rho_{xx}(0)$, and a_{xx}^2 For linear $\rho_{xy}(B)$: a_{xy}^1 only

At least two parameter sets gives similar residuals S²

Features of NL optimization algorisms						
	Convergence	A	B			
	Speed	×	0			
	Stability	0	×			
	Region	0	×			
	For:	Initial cycles	Later fast			
			convergence			

- A: Simplex (単体法)
- A,B: Conjugate Gradient (CG, 共役勾配法)
- B: Steepest Descent (SD, 最急降下法)
- **B:** Newton-Raphson method, Quasi Newton methods
 - Davidson-Fletcher-Powell (DFP)
 - Broyden-Fletcher-Goldfarb-Shanno (BFGS)